人工智能知识图谱发布,人工智能激发新活力!
知识图谱(Knoledge Graph)于2012年由谷歌提出并成功应用于当中。它以结构化的形式描述客观世界中概念、实体及其之间的关系,将互联网的信息表达成更接近人类认知世界的形式,提供了一种更好地组织、管理和理解互联网海量信息的能力。
知识图谱的原理和方法
知识体系构建。
根据分类,可以把知识图谱分为通用型和领域型。无论是什么类型的知识图谱都需要对其服务的领域进行知识建模。也就是说,采用什么样的方式来表达知识。
知识融合。
一个知识库可以和其他知识库进行融合。在不同领域知识图库进行融合时,会发现来自不同领域,不同语言,甚至不同结构的知识需要做“补充,更新和去重的操作”。
这就是知识融合,一般分为知识体系融合和实例融合。这部分的操作也可以在构建知识体系的时候统筹考虑。
知识获龋
知识获取的目的是从海量的信息中抽取知识。本文中提到的“获取信息”多为文本信息,这里的“获取信息”也是从文本中获取信息的过程。
获取信息结构上划分为三类,分别是结构化信息,半结构化信息和非结构化信息。
从获取信息内容上又分为,实体识别,实体消歧,关系抽取和事件抽龋知识存储在完成了知识抽取和融合之后,就需要将知识存储下来了。
有RDF格式和图数据库两种方式。因为图数据库对于查询友好,被广泛使用,例如Neo4j。
知识推理。
识别并抽取知识以及存储知识以后,我们会试图挖掘实体之间隐含的语义关系。这个过程就是知识推理。例如已知A是B的儿子,又知道B是C的儿子。那么可以推理出A是C的孙子。
知识应用。
识别,抽取,存储和推理的最终目的还是为了应用。知识图谱在搜索,问答,推荐,决策方面被广泛应用。
知识图谱的发布,揭示着人工智能的发展将会持续呈现特色化、开放化、智能化的趋势,为更好发挥现有知识图谱知识表达、知识资源优势,需与其他技术(信息推荐、事理图谱、、深度学习等)相结合。
各大互联网巨头布局知识图谱领域,而知识图谱尚处于发展初期,商业应用落地场景有限,如何有效实现知识图谱的应用,利用知识图谱实现深度知识推理,提高大规模知识图谱计算效率和应用场景?这些问题将是未来一段时间业界亟需解决的问题!
信息提娶查询应答、问题回答、、概率逻辑、实体消歧、实体识别、查询处理、决策支持等方向的研究热度在近年来逐渐上升,知识图谱也成为了各大人工智能与互联网公司的兵家必争之地,它与、深度学习一起,成为推动互联网和人工智能发展的核心驱动力之一。
机器人技术
- 800多家中国机器人企业近半无产品
- 看看机器人在和你抢什么
- 马化腾、李彦宏等科技企业大佬们在贵阳大数据
- 机器人投入汽车产业园 探索机器人产业链
- 特斯拉 Cybertruck 电动皮卡换上黑色外衣,有望为
- 沁峰如何成为冲压机器人细分赛道国家专精特新
- 运动机器人智障了吗?
- Rivian 将投资 50 亿美元在佐治亚州建造电动汽车工
- 调查发布 - 制造业在疫情防控常态化下突围——
- 未来工业机器人的市场什么样的变化
- 进博会特斯拉展台最全预测 沉浸式体验智能制造
- 美国将中国电动汽车关税提高到 100%,极星 CEO 对
- DeepMind 联合创始人:交互式 AI 才会“改变人类”
- 把握发展趋势 推动机器人产业高质量发展
- AI入侵教师职业,这五类产品发展迅猛
- 他们用AI和食用植物创造“人工肉食”,你想尝尝