迎风而上2021:如何破题五大数据挑战?

人工智能 2022-06-19 08:09www.robotxin.com人工智能专业

白驹过隙,时光荏苒。2020年对于我们所有人来说都是不平凡的一年。我们见证了COVID-19疫情的肆虐,也体会了战疫中科技的能量。不仅应对疫情,科技在改变着我们疫后生活、工作的方式,这其中,数据的存储和管理,也呈现出更多的新态势,需要我们去关注并给与及时应对。

1.     (静态和动态数据)分层安全的重要性日益提高。

超大规模软件生态系统不断发展,使得企业和站点在不具备基础设施所需联网能力的情况下,也能够在较小的“原子单元”上开发和部署应用。越来越多的云原生应用在全球各地的联网点或托管设施上运行。企业必须在流程的每一步对数据进行保护,在更加分布式的部署模式中妥善保护用户静态和动态数据。

给企业领导者的建议在许多行业中,为防止来自内、外部的各种威胁,静态数据加密逐渐成为强制性要求。也许今天在您所处的行业中静态数据加密还不是一项强制性要求,但将来终归会如此。,希捷建议您未雨绸缪,尽快采用加密硬盘,以确保不会造成业务中断。

2.     企业更广泛地采用对象存储。

随着数据的爆炸式增长,对象存储开始成为大容量存储的标配。相较于传统的文件存储而言,对象存储具有诸多优势,包括规范性元数据、可扩展性和无分层数据结构。系统得益于数据集蕴含的更高智能,而对象存储恰能够提供这种智能。存储类型包括块存储、文件存储和对象存储。对于对性能十分敏感的许多任务关键型应用来说,块存储至关重要;文件存储多年来一直服务于传统应用,并可提供可靠的架构;而对象存储则侧重于新应用的开发,它可以与块存储相结合,以共生的方式提升系统规模和性能。许多传统文件应用也在向对象存储基础设施迁移,以充分利用其提供的规模效益。

给企业领导者的建议由于具备较高的经济效率和可扩展性,对象存储正在迅速成为事实上的大容量存储标准,以快速补充和取代文件存储。,新毕业的程序员越来越多地基于对象存储接口来构建工作流程。我们应该多聘用这样的人才。如果您尚未将对象存储引入自己的数据中心,那么现在是时候采取行动了。

3.   可组合系统日益普遍。

将系统划分为独立单元,让它们能够与其他独立单元进行组合,这并不是新想法,在开源的基础上广泛采用可组合系统才刚刚起步。Kuberes是一个开源系统,用于自动部署、扩展和管理容器化应用,是上述发展趋势的核心。开源是应用开发的未来,因为它能够让更广泛的社区携手解决许多行业共同面临的挑战,并允许通过开放式架构部署特定领域解决方案。将硬件进行组合以便更好地满足软件或业务需求,是一个必然的发展方向。

给企业领导者的建议今天的数据中心正朝着可组合的方向发展,因为它可以更加轻松地部署及重新部署资源,而无需先验配置以及计算、内存和存储之间的静态配置比率。容器和Kuberes是可组合系统的核心机制,所有数据中心都应该着手采用这些技术,如果它们还没有采用的话。

4.   分层部署大容量存储(将热数据放在闪存上,而所有其他数据放在硬盘上)。

英伟达GPU设计将内存划分为不同的层级(寄存器、共享内存和全局内存),每一层有不同的属性。寄存器延迟较低,内存较小;全局内存延迟较高,提供更大内存。英伟达提供了一个软件界面,使用户可以充分利用分级内存和根据该架构优化的各种解决方案。同样,SSD和HDD也可以处于不同的层级。我们创建了太多有价值的数据,采用同构存储策略无法提高效率。

那么分级存储为什么重要呢?全部由高性能存储设备组成的存储系统成本会比预期高;而全部由大容量存储设备组成的存储系统性能又达不到要求。于是,分级存储应运而生这种方式可以在成本和性能间取得最佳平衡。随着其他存储技术(例如存储级内存)的不断出现,我们迫切需要能够从各级存储中提取最大价值的架构。

给企业领导者的建议如果预算无限充足,数据中心可以全部采用成本高昂的存储介质。遗憾的是,成本的现实打碎了幻想,我们不得不进行分级存储热数据保存在高成本、高性能的介质上,而访问频率较低的数据则放在经济实用的大容量存储介质上。幸运的是,数据中心软件越来越擅长识别热数据和冷数据,并进行相应的迁移。如果您的数据中心尚未采用异构存储介质,那么您有可能损失了存储性能,或者付出了高昂的存储成本。

5.   形成性人工智能提升数据的可用性。

不仅数据的创建呈爆炸式增长,有用数据量也在迅猛增长;甚至由于人工智能/机器学习(AI/ML)的进步使得用户能够从已经归档的数据中获取更多信息,已归档数据也开始被激活。企业领导者必须做好准备存储比以往任何时候都要多的数据,用于训练各种模型,以便挖掘重要信息;由于数据的使用寿命有可能会延长,也要准备归档更多数据。形成性人工智能是一种使数据变得更具洞察性的手段。Gartner将形成性人工智能定义为“一种能够动态变化以响应具体情况的人工智能”。IDC将形成性人工智能视为“各种新兴人工智能及相关技术的总称,它可以根据情况的变化而动态变化。”由于依赖于能够智能地响应变化的灵活架构,形成性人工智能与分级存储趋势紧密相关。您在监控人工智能模型时有可能会收到信号说它发生了偏离。此时,您可以使用一个模型在硬盘层上搜索适当的训练数据,并将这些数据自动移动到闪存层,以加快训练速度。硬盘层也可能是对象存储,也与对象存储发展趋势有关。其优点既在于速度(因为数据会自动移动到快速存储层),也在于成本(因为您可以将数据以易于访问的形式存储在高性价比的硬盘上,以备需要时调用)。

给企业领导者的建议机器学习的最新创新最终释放了期待已久的人工智能潜力。现在,这些机器学习技术需要使用更大的数据集,从而提取更精确的洞察。由于机器学习的未来发展和进步难以预测,所以企业从现在开始就应该保存尽可能多的数据,以确保将来能够使用最好的训练数据来进行各种分析。

 

Copyright © 2016-2025 www.robotxin.com 人工智能机器人网 版权所有 Power by