聊聊Hive常见的分析函数
1.基本语法 Function (arg1,..., argn) OVER ([PARTITION BY <...>] [ORDER BY <....>] [<indo_expression>])
Function (arg1,..., argn) 可以是下面的四类函数
Aggregate Functions: 聚合函数,比如sum(...)、 max(...)、min(...)、avg(...)等 Sort Functions: 数据排序函数, 比如 rank(...)、ro_number(...)等 Analytics Functions: 统计和比较函数, 比如lead(...)、lag(...)、 first_value(...)等 2.数据准备
样例数据
[职工姓名|部门编号|职工ID|工资|岗位类型|入职时间] Michael|1000|100|5000|full|2014-01-29 Will|1000|101|4000|full|2013-10-02 Wendy|1000|101|4000|part|2014-10-02 Steven|1000|102|6400|part|2012-11-03 Lucy|1000|103|5500|full|2010-01-03 Lily|1001|104|5000|part|2014-11-29 Jess|1001|105|6000|part|2014-12-02 Mike|1001|106|6400|part|2013-11-03 Wei|1002|107|7000|part|2010-04-03 Yun|1002|108|5500|full|2014-01-29 Richard|1002|109|8000|full|2013-09-01
建表语句
CREATE TABLE IF NOT EXISTS employee ( name string, dept_num int, employee_id int, salary int, type string, start_date date ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED as TEXTFILE;
加载数据
load data local inpath '/opt/datas/data/employee_contract.txt' into table employee; 3.窗口聚合函数
(1)查询姓名、部门编号、工资以及部门人数
select name, dept_num as deptno , salary, count() over (partition by dept_num) as t from employee ;
结果输出
name deptno salary t Lucy 1000 5500 5 Steven 1000 6400 5 Wendy 1000 4000 5 Will 1000 4000 5 Michael 1000 5000 5 Mike 1001 6400 3 Jess 1001 6000 3 Lily 1001 5000 3 Richard 1002 8000 3 Yun 1002 5500 3 Wei 1002 7000 3
(2)查询姓名、部门编号、工资以及每个部门的总工资,部门总工资按照降序输出
select name , dept_num as deptno, salary, sum(salary) over (partition by dept_num order by dept_num) as sum_dept_salary from employee order by sum_dept_salary desc;
结果输出
name deptno salary sum_dept_salary Michael 1000 5000 24900 Will 1000 4000 24900 Wendy 1000 4000 24900 Steven 1000 6400 24900 Lucy 1000 5500 24900 Wei 1002 7000 20500 Yun 1002 5500 20500 Richard 1002 8000 20500 Lily 1001 5000 17400 Jess 1001 6000 17400 Mike 1001 6400 17400 4.窗口排序函数
简介
窗口排序函数提供了数据的排序信息,比如行号和排名。在一个分组的内部将行号或者排名作为数据的一部分进行返回,最常用的排序函数主要包括
ro_number根据具体的分组和排序,为每行数据生成一个起始值等于1的唯一序列数
rank对组中的数据进行排名,如果名次相同,则排名也相同,下一个名次的排名序号会出现不连续。比如查找具体条件的N行
dense_rankdense_rank函数的功能与rank函数类似,dense_rank函数在生成序号时是连续的,而rank函数生成的序号有可能不连续。当出现名次相,则排名序号也相同。而下一个排名的序号与上一个排名序号是连续的。
percent_rank排名计算公式为(current rank - 1)/(total number of ros - 1)
ntile将一个有序的数据集划分为多个桶(bucket),并为每行分配一个适当的桶数。它可用于将数据划分为相等的小切片,为每一行分配该小切片的数字序号。
(1)查询姓名、部门编号、工资、排名编号(按工资的多少排名)
select name , dept_num as dept_no , salary, ro_number() over (order by salary desc ) rnum from employee;
结果输出
name dept_no salary rnum Richard 1002 8000 1 Wei 1002 7000 2 Mike 1001 6400 3 Steven 1000 6400 4 Jess 1001 6000 5 Yun 1002 5500 6 Lucy 1000 5500 7 Lily 1001 5000 8 Michael 1000 5000 9 Wendy 1000 4000 10 Will 1000 4000 11
(2)查询每个部门工资最高的两个人的信息(姓名、部门、薪水)
select name, dept_num, salary from ( select name , dept_num , salary, ro_number() over (partition by dept_num order by salary desc ) rnum from employee) t1 here rnum <= 2;
结果输出
name dept_num salary Steven 1000 6400 Lucy 1000 5500 Mike 1001 6400 Jess 1001 6000 Richard 1002 8000 Wei 1002 7000
(3)查询每个部门的员工工资排名信息
select name , dept_num as dept_no , salary,ro_number() over (partition by dept_num order by salary desc ) rnum from employee;
结果输出
name dept_no salary rnum Steven 1000 6400 1 Lucy 1000 5500 2 Michael 1000 5000 3 Wendy 1000 4000 4 Will 1000 4000 5 Mike 1001 6400 1 Jess 1001 6000 2 Lily 1001 5000 3 Richard 1002 8000 1 Wei 1002 7000 2 Yun 1002 5500 3
(4)使用rank函数进行排名
select name, dept_num, salary, rank() over (order by salary desc) rank from employee;
结果输出
name dept_num salary rank Richard 1002 8000 1 Wei 1002 7000 2 Mike 1001 6400 3 Steven 1000 6400 3 Jess 1001 6000 5 Yun 1002 5500 6 Lucy 1000 5500 6 Lily 1001 5000 8 Michael 1000 5000 8 Wendy 1000 4000 10 Will 1000 4000 10
(5)使用dense_rank进行排名
select name, dept_num, salary, dense_rank() over (order by salary desc) rank from employee;
结果输出
name dept_num salary rank Richard 1002 8000 1 Wei 1002 7000 2 Mike 1001 6400 3 Steven 1000 6400 3 Jess 1001 6000 4 Yun 1002 5500 5 Lucy 1000 5500 5 Lily 1001 5000 6 Michael 1000 5000 6 Wendy 1000 4000 7 Will 1000 4000 7
(6)使用percent_rank()进行排名
select name, dept_num, salary, percent_rank() over (order by salary desc) rank from employee;
结果输出
name dept_num salary rank Richard 1002 8000 0.0 Wei 1002 7000 0.1 Mike 1001 6400 0.2 Steven 1000 6400 0.2 Jess 1001 6000 0.4 Yun 1002 5500 0.5 Lucy 1000 5500 0.5 Lily 1001 5000 0.7 Michael 1000 5000 0.7 Wendy 1000 4000 0.9 Will 1000 4000 0.9
(7)使用ntile进行数据分片排名
SELECT name, dept_num as deptno, salary, ntile(4) OVER(ORDER BY salary desc) as ntile FROM employee;
结果输出
name deptno salary ntile Richard 1002 8000 1 Wei 1002 7000 1 Mike 1001 6400 1 Steven 1000 6400 2 Jess 1001 6000 2 Yun 1002 5500 2 Lucy 1000 5500 3 Lily 1001 5000 3 Michael 1000 5000 3 Wendy 1000 4000 4 Will 1000 4000 4
从 Hive v2.1.0开始, 支持在OVER语句里使用聚集函数,比如
SELECT dept_num, ro_number() OVER (PARTITION BY dept_num ORDER BY sum(salary)) as rk FROM employee GROUP BY dept_num;
结果输出
dept_num rk 1000 1 1001 1 1002 1 5.窗口分析函数
常用的分析函数主要包括
cume_dist
如果按升序排列,则统计小于等于当前值的行数/总行数(number of ros ≤ current ro)/(total number of ros)。如果是降序排列,则统计大于等于当前值的行数/总行数。比如,统计小于等于当前工资的人数占总人数的比例 ,用于累计统计。
lead(value_expr[,offset[,default]])
用于统计窗口内往下第n行值。第一个参数为列名,第二个参数为往下第n行(可选,默认为1),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL
lag(value_expr[,offset[,default]]):
与lead相反,用于统计窗口内往上第n行值。第一个参数为列名,第二个参数为往上第n行(可选,默认为1),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)
first_value: 取分组内排序后,截止到当前行,第一个值 last_value
取分组内排序后,截止到当前行,一个值
(1)统计小于等于当前工资的人数占总人数的比例 SELECT name, dept_num as deptno, salary, cume_dist() OVER (ORDER BY salary) as cume FROM employee;
结果输出
name deptno salary cume Wendy 1000 4000 0.18181818181818182 Will 1000 4000 0.18181818181818182 Lily 1001 5000 0.36363636363636365 Michael 1000 5000 0.36363636363636365 Yun 1002 5500 0.5454545454545454 Lucy 1000 5500 0.5454545454545454 Jess 1001 6000 0.6363636363636364 Mike 1001 6400 0.8181818181818182 Steven 1000 6400 0.8181818181818182 Wei 1002 7000 0.9090909090909091 Richard 1002 8000 1.0
(2)统计大于等于当前工资的人数占总人数的比例
SELECT name, dept_num as deptno, salary, cume_dist() OVER (ORDER BY salary desc) as cume FROM employee;
结果输出
name deptno salary cume Richard 1002 8000 0.09090909090909091 Wei 1002 7000 0.18181818181818182 Mike 1001 6400 0.36363636363636365 Steven 1000 6400 0.36363636363636365 Jess 1001 6000 0.45454545454545453 Yun 1002 5500 0.6363636363636364 Lucy 1000 5500 0.6363636363636364 Lily 1001 5000 0.8181818181818182 Michael 1000 5000 0.8181818181818182 Wendy 1000 4000 1.0 Will 1000 4000 1.0
(3)按照部门统计小于等于当前工资的人数占部门总人数的比例
SELECT name, dept_num as deptno, salary, cume_dist() OVER (PARTITION BY dept_num ORDER BY salary) as cume FROM employee;
结果输出
name deptno salary cume Wendy 1000 4000 0.4 Will 1000 4000 0.4 Michael 1000 5000 0.6 Lucy 1000 5500 0.8 Steven 1000 6400 1.0 Lily 1001 5000 0.3333333333333333 Jess 1001 6000 0.6666666666666666 Mike 1001 6400 1.0 Yun 1002 5500 0.3333333333333333 Wei 1002 7000 0.6666666666666666 Richard 1002 8000 1.0
(4)按部门分组,统计每个部门员工的工资以及大于等于该员工工资的下一个员工的工资
SELECT name, dept_num as deptno, salary, lead(salary,1) OVER (PARTITION BY dept_num ORDER BY salary) as lead FROM employee;
结果输出
name deptno salary lead Wendy 1000 4000 4000 Will 1000 4000 5000 Michael 1000 5000 5500 Lucy 1000 5500 6400 Steven 1000 6400 NULL Lily 1001 5000 6000 Jess 1001 6000 6400 Mike 1001 6400 NULL Yun 1002 5500 7000 Wei 1002 7000 8000 Richard 1002 8000 NULL
(5)按部门分组,统计每个部门员工的工资以及小于等于该员工工资的上一个员工的工资
SELECT name, dept_num as deptno, salary, lag(salary,1) OVER (PARTITION BY dept_num ORDER BY salary) as lead FROM employee;
结果输出
name deptno salary lead Wendy 1000 4000 NULL Will 1000 4000 4000 Michael 1000 5000 4000 Lucy 1000 5500 5000 Steven 1000 6400 5500 Lily 1001 5000 NULL Jess 1001 6000 5000 Mike 1001 6400 6000 Yun 1002 5500 NULL Wei 1002 7000 5500 Richard 1002 8000 7000
(6)按部门分组,统计每个部门员工工资以及该部门最低的员工工资
SELECT name, dept_num as deptno, salary, first_value(salary) OVER (PARTITION BY dept_num ORDER BY salary) as fval FROM employee;
结果输出
name deptno salary fval Wendy 1000 4000 4000 Will 1000 4000 4000 Michael 1000 5000 4000 Lucy 1000 5500 4000 Steven 1000 6400 4000 Lily 1001 5000 5000 Jess 1001 6000 5000 Mike 1001 6400 5000 Yun 1002 5500 5500 Wei 1002 7000 5500 Richard 1002 8000 5500
(7)按部门分组,统计每个部门员工工资以及该部门最高的员工工资
SELECT name, dept_num as deptno, salary, last_value(salary) OVER (PARTITION BY dept_num ORDER BY salary RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as lval FROM employee;
结果输出
name deptno salary lval Wendy 1000 4000 6400 Will 1000 4000 6400 Michael 1000 5000 6400 Lucy 1000 5500 6400 Steven 1000 6400 6400 Lily 1001 5000 6400 Jess 1001 6000 6400 Mike 1001 6400 6400 Yun 1002 5500 8000 Wei 1002 7000 8000 Richard 1002 8000 8000
注意last_value默认的窗口是RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW,表示当前行永远是一个值,需改成RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING。
img
RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
为默认值,即当指定了ORDER BY从句,而省略了indo从句 ,表示从开始到当前行。
RANGE BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
表示从当前行到一行
RANGE BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING
表示所有行
n PRECEDING m FOLLOWING
表示窗口的范围是[(当前行的行数)- n, (当前行的行数)+m]
人工智能培训
- 真正能和人交流的机器人什么时候实现
- 国产机器人成功完成首例远程冠脉介入手术
- 人工智能与第四次工业革命
- 未来30年的AI和物联网
- 新三板创新层公司东方水利新增专利授权:“一
- 发展人工智能是让人和机器更好地合作
- 新春贺喜! 经开区持续推进工业互联网平台建设
- 以工业机器人为桥 传统企业如何趟过智造这条河
- 山立滤芯SAGL-1HH SAGL-2HH
- 2015国际智能星创师大赛火热报名中!
- 未来机器人会咋看人类?递归神经网络之父-像蚂
- 成都新川人工智能创新中心二期主体结构封顶
- 斯坦德机器人完成数亿元人民币C轮融资,小米产
- 到2020年,智能手机将拥有十项AI功能,有些可能
- 寻找AI机器人的增长“跳板”:老龄化为支点的产
- 力升高科耐高温消防机器人参加某支队性能测试