轻松三步搞定数据统计分析:统计+分析+可视化!
我们都知道,数据是支撑决策的重要依据,于是我们可以看到,几乎所有的产品,都会具有数据统计分析的功能模块。往大了说,比如数据中台;往高端了说,比如数据大屏、数据看板、数据驾驶舱;往本质了说,其实就是数据的统计分析。作为一个非数据型产品经理,或者是初级产品经理,该怎样设计这个功能模块呢?
如果你刚好为此苦恼,不妨试一下我最近研究的这三步曲统计+分析+可视化!
前言
关于数据统计分析,表达一个我蛮认同的观点
好的数据分析师,要像眼科医生一样配眼镜可能有很多专业的方法,有很多专业的工具,可在配的过程中,医生纠结的不是自己的理论,而是关注用户看得清不清楚,不断问用户“这样可以吗?这样更清楚吗?再这样试试呢?” —— 接地气的陈老师
相信在工作中,大家经常会碰到一些“孔乙己”式的数据统计分析,一开口就是“xx 指标体系”,再加上一大堆什么“权威的、标准的、BAT 认定的”这之类的修饰词汇。这特么就是典型的虚假数据分析啊,因为这些大多数时候,耗时费力,却没有解决实际问题。
并且这种虚假的数据统计分析,还有它遵循的理论模型
而真正的数据统计分析,就像太极拳的精髓一样“只重其义,不重其招,你忘记所有的招式,就练成太极拳了。”(以解决业务问题为根本)
统计
要搞数据的统计分析,那第一步我们得先有数据,也就是数据的统计工作。提起数据统计,那自然绕不开数据埋点。如果你们公司从来没整过埋点这个事,那也不用大费周章,因为界内已经有很多成熟的埋点公司了,例如神策、友盟等等,直接花钱办事就完了,也不贵。
我们今天研究的,是通过埋点,能够获得哪些数据呢?下来,大概有这么五类
埋点获取五类数据
整体概况 用户获取 活跃与留存 事件转化 用户特征
来来来,我们逐个剖析一下,这几类数据,具体都包含什么,以及获取这些数据有啥用。
1. 整体概况
实时数据意义可以获取到每个小时的产品实时数据,帮助你了解产品目前的实时情况。 使用概况意义产品整体的使用情况,包括用户量、访问情况、留存等,帮助你对产品整体指标有一个大致的了解。 2. 用户获取
渠道访问意义每个渠道的用户的使用情况,包括渠道中新用户的占比、留存等,帮助你了解产品在获客层面上的优势与不足。 版本数据意义每个版本的使用情况,帮助你了解在产品升级的过程中,是否在活跃和留存方面有所改善。 3. 活跃与留存
访问流量意义产品的每日访问数据,指标集中在新老用户的访问行为上,提供访问次数、时长、次数分布、访问时段高峰等指标,帮助了解新老用户在使用产品时的一些行为特征。 用户留存意义提供用户 7 日,次日,次周,次月留存的数据,帮助你了解新老用户的使用粘性。 4. 事件转化
自定义事件意义用户自定义关键事件,系统会自动生成该事件的发生次数、人数以及分布情况,也就是能够看到用户都在干啥。 收益类事件意义用户自定义收益类事件,系统会自动生成该事件的发生次数、人数以及分布情况,会根据你选择的数值类型属性,计算该数值的总值、人均值以及次均值。也就是能够看到用户都咋花钱的。 5. 用户特征
用户特征意义能够看到我们的用户,都是哪些牛鬼蛇神~ 分析
有了埋点的数据以后,那就是怎样利用这些数据,充分发掘这些数据的价值了。数据分析的套路就更多了,把下面这些学会,应该“二八原则”里面的“八”就能够搞定了~
1. 常见的数据分析指标
综合性指标反映产品的整体情况。 流程性指标反映用户的使用行为。 业务性指标反映具体的业务情况。 2. 常见的数据分析维度
数据细分通过不同的细分维度分析,往往可以追溯到问题发生的原因,还能为后续的一些动作提供参考依据。 数据对比没有对比就没有伤害,一方面是横向比较,即自身和别人进行对比,如常见的同比、环比;另一方面是纵向比较,即自身和自身进行对比,比如行业竞品、全站数据、AB 测试等。 3. 常见的数据分析方法
HEART 模型Google HEART 模型的提出,可以让大家反思自己的产品设计思维,运用相关设计工具去提高 HEART 五项指标来完善用户体验,打造更好的产品。
AARRR 模型该模型出自于《增长黑客》,它是在 2007 提出,当年的获客成本还比较低廉,而这种模型很简单又很直观地突出了增长的所有重要元素,所以这个模型很长时间内都很受欢迎。RARRA 模型而现在获客的成本与日俱增,市场情况和 2007 年已经完全不同。现在黑客增长的真正关键在于用户留存,而不是获客。于是,一个突出了用户留存重要性的模型 RARRA 诞生了。
可视化
有了统计的数据以及分析的维度之后,一步工作就是可视化啦!
而想要完成这一步,又快又好的方法,那自然就是参考各种规范啦,我们可以去一个叫做「e-charts」的网站,去查看各种可视化图表,因为开发很多时候,就是依照这些开源的图表库进行撸代码的~
而我们设计的时候,就需要借助各种原型组件啦。数据可视化的内容有很多,我们来举几个典型例子
1. 折线图
注意事项选用的线型要相对粗些,线条一般不超过 5 条,不使用倾斜的标签,纵坐标轴一般刻度从 0 开始。预测值的线条线型改为虚线。
2. 柱形图
注意事项同一数据序列使用相同的颜色。不使用倾斜的标签,纵坐标轴一般刻度从 0 开始。,柱形图最好添加数据标签,如果添加了数据标签,可以删除纵坐标刻度线和网格线。
3. 条形图
注意事项同一数据序列使用相同的颜色。不使用倾斜的标签,最好添加数据标签,尽量让数据由大到小排列,方便阅读。
4. 饼图
注意事项把数据从 12 点钟的位置开始排列,最重要的成分紧靠 12 点钟的位置。数据项不要太多,保持在 6 项以内,不使用爆炸式的饼图分离。不过可以将某一片的扇区分离出来,前提是你希望强调这片扇区。
饼图不使用图例,不使用 3D 效果,当扇区使用颜色填充时,推荐使用白色的边框线,具有较好的切割感。
5. 其他
这种数据可视化的图表还有很多,而它的意义就在于,用图表代替大量堆砌的数字,有助于阅读者更形象直观地看清楚问题和结论。我也在工作中搜集到了一些不错的数据可视化原型组件,有需要的同学可以自行下载啦~
好了,以上就是今天的所有内容了,正如前言所说的,我们今天只讨论武功招式,不讨论内功心法。
延伸一下数据统计分析,最终还是要从业务中来,到业务中去,一切的形式,都是次要的,关键还是要以解决业务问题为根本、但对于我们这些“新手”来说,经验主义自然也是要借鉴的!相信今天的内容,也足够支撑大家比葫芦画瓢啦。
再重申一下,想要数据可视化原型组件的同学,可以自行在附件下载啦~
人工智能培训
- 真正能和人交流的机器人什么时候实现
- 国产机器人成功完成首例远程冠脉介入手术
- 人工智能与第四次工业革命
- 未来30年的AI和物联网
- 新三板创新层公司东方水利新增专利授权:“一
- 发展人工智能是让人和机器更好地合作
- 新春贺喜! 经开区持续推进工业互联网平台建设
- 以工业机器人为桥 传统企业如何趟过智造这条河
- 山立滤芯SAGL-1HH SAGL-2HH
- 2015国际智能星创师大赛火热报名中!
- 未来机器人会咋看人类?递归神经网络之父-像蚂
- 成都新川人工智能创新中心二期主体结构封顶
- 斯坦德机器人完成数亿元人民币C轮融资,小米产
- 到2020年,智能手机将拥有十项AI功能,有些可能
- 寻找AI机器人的增长“跳板”:老龄化为支点的产
- 力升高科耐高温消防机器人参加某支队性能测试