十分钟,如何制作一个聊天机器人?
本文转载自公众号“读芯术”(IDAI_Discovery)
了解聊天机器人的主要用途很重要,每个行业都不能使用同一个聊天机器人,他们有不同的目的和不同的语料库。虽然消息传递组件可以很好地给予答复,可能需要时间作出回应。另一方面,考虑到时间问题,可以应用各种其他方法,甚至可以找到一些以规则为基础的系统,以获得适合回答所提问题的语句。
你曾多少次联系旅行社要求退票,得到一个恰当的答复是远远不够的。
现在让我们制作一个简单的聊天机器人,安装以下软件包
pip install nltk pip install nespaper3k
Package nespaper3k有以下优点
多线程文章下载框架 可识别新闻URL 可从HTML中提取文本 从HTML中提取顶层图像 可从HTML提取所有图像 可从文本中提取关键词 可从文本中提取摘要 可从文本中提取作者 谷歌趋势术语提取 使用10多种语言(英语、德语、阿拉伯语、中文等)
导入库,如下所示
#import libraries from nespaper import Article import random import nltk import string from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics.pairise import cosine_similarity
余弦相似度或余弦核将相似度计算为X和Y的标准化点积
sklearn.metrics.pairise.cosine_similarity(X, Y=None, dense_output=True) 参数
X{ndarray, sparse matrix} of shape (n_samples_X, n_features) 输入数据。
Y{ndarray,sparse matrix} of shape (n_samples_Y, n_features), default=None 输入数据。
如果没有,输出将是X. dense_outputbool中所有样本之间的成对相似性,default =True是否返回密集输出,即使输入是稀疏的。如果为False,则如果两个输入数组都是稀疏的,则输出是稀疏的。
返回
核矩阵ndarray of shape(n_samples_X, n_samples_Y)
import numpy as np import arnings arnings.filterarnings('ignore')
这里从一个医疗保健网站获取数据
article=Article("https://.mayoclinic./diseases-conditions/chronic-kidney-disease/symptoms-causes/syc-20354521") article.donload() article.parse() article.nlp() corpus=article.text print(corpus) #tokenization text=corpus sentence_list=nltk.sent_tokenize(text) #A list of sentences #Print the list of sentences print(sentence_list)
准备好了语料库之后,你需要考虑用户或客户可能会问或说的问题,这与我们的内容无关。它可以是问候语、感谢语,也可以是拜拜之类的信息。团队需要就这些信息和他们的反应进行考量。
问候机器人响应
#Random response to greeting def greeting_response(text): text=text.loer() #Bots greeting bot_greetings=["hody","hi","hola","hey","hello"] #User Greetings user_greetings=["assup","hody","hi","hola","hey","hello"] for ord in text.split(): if ord in user_greetings: return random.choice(bot_greetings) #Random response to greeting def gratitude_response(text): text=text.loer()
感谢机器人响应
#Bots gratitude bot_gratitude=["Glad tohelp","You are most ele", "Pleasure to be ofhelp"] #User Gratitude user_gratitude=["Thankyou somuch","grateful","Thankyou","thankyou","thankyou"] for ord in text.split(): if ord in user_gratitude: return random.choice(bot_gratitude)
种类列表
# Default title text def index_sort(list_var): length=len(list_var) list_index=list(range(0,length)) x=list_var for i in range(length): for j in range(length): if x[list_index[i]]>x[list_index[j]]: #sap temp=list_index[i] list_index[i]=list_index[j] list_index[j]=temp return list_index
聊天机器人响应功能来自于对预定义文本的余弦相似性的响应。
#Creat Bots Response def bot_response(user_input): user_input=user_input.loer() sentence_list.append(user_input) bot_response="" cm=CountVectorizer().fit_transform(sentence_list) similarity_scores=cosine_similarity(cm[-1],cm) similarity_scores_list=similarity_scores.flatten() index=index_sort(similarity_scores_list) index=index[1:] response_flag=0 j=0 for i in range(len(index)): ifsimilarity_scores_list[index[i]]>0.0: bot_response=bot_response+''+sentence_list[index[i]] response_flag=1 j=j+1 if j>2: break if response_flag==0: bot_response=bot_response+""+"I apologize, I dont understand" sentence_list.remove(user_input) return bot_response
对于退出聊天,退出列表中的单词写为“退出”,“再见”,“再见”,“退出”。
响应这些话,聊天机器人将退出聊天。
启动聊天机器人,尽情享受吧!
#Start Chat print("Doc Bot: I am DOc bot and I ill anser your queries about chronickidney disease, if you ant to exit type, bye") exit_list=['exit','bye','see you later','quit'] hile(True): user_input=input() if user_input.loer() in exit_list: print("Doc Bot: Bye Bye See youlater") break elif greeting_response(user_input)!=None: print("Doc Bot: "+greeting_response(user_input)) elif gratitude_response(user_input)!=None: print("Doc Bot: "+gratitude_response(user_input)) else: print("Doc Bot: "+bot_response(user_input))
请参见下面聊天机器人的回复
“谢谢”并不在我们的机器人感谢程序中,我们要传达这样的信息。随着时间的推移,你可以扩大这样的词汇表,或者使用正则表达式对其进行微调。
举个小例子,与聊天机器人开始聊天,应该是快速和简单的。你需要针对不同行业对聊天机器人进行微调,这些行业的语料库来自实时数据或云端的一些储存。
,需要注意的是,实时数据要面对挑战,聊天必须基于最新的数据作出回应,例如在旅行社订票。
人工智能培训
- 真正能和人交流的机器人什么时候实现
- 国产机器人成功完成首例远程冠脉介入手术
- 人工智能与第四次工业革命
- 未来30年的AI和物联网
- 新三板创新层公司东方水利新增专利授权:“一
- 发展人工智能是让人和机器更好地合作
- 新春贺喜! 经开区持续推进工业互联网平台建设
- 以工业机器人为桥 传统企业如何趟过智造这条河
- 山立滤芯SAGL-1HH SAGL-2HH
- 2015国际智能星创师大赛火热报名中!
- 未来机器人会咋看人类?递归神经网络之父-像蚂
- 成都新川人工智能创新中心二期主体结构封顶
- 斯坦德机器人完成数亿元人民币C轮融资,小米产
- 到2020年,智能手机将拥有十项AI功能,有些可能
- 寻找AI机器人的增长“跳板”:老龄化为支点的产
- 力升高科耐高温消防机器人参加某支队性能测试