AI找石油,石油工业数字化转型新思维

人工智能 2021-06-01 11:12www.robotxin.com人工智能专业

我们知道,石油不仅是工业的血液,还跟日常生活息息相关。据统计,人的一生大约需要消耗石油在9吨以上,从衣食住行到国际经济都离不开石油。

油气是油气矿藏埋在地下数千米深的岩石微小孔穴中,看不见,摸不着。由于极端的复杂性等原因,人类对地表以下的认知,比对太空的了解更少。

怎么样才能找到油气矿藏?石油专家们发明了各种各样的地球物理以及钻探的方法和技术,逐步建立起对地下世界的认知。

通过物探、测井等地球物理以及岩石物理的方法,人们可以采集到关于地下地球物理性质的大量数据,通过去除数据噪声、提取地质特征等数据分析,对处理结果进行解释,就可以判断地下是否有油气以及有多少油气可以开采出来。

我国的油气资源相对比较丰富,地质条件十分复杂,劣质化程度非常高,常规的找油找气方法面临严峻的挑战。

找油找气工作质量的一个重要指标是探井的成功率,也就是找到具有工业油气流的井数在探井总数中的占比。目前常规方法的探井成功率还很低,只有50%左右。

勘探地质物理收集到的数据量特别巨大,以地震勘探为例,每次三维地震会产生几百个TB乃至PB级的数据量。勘探数据的来源也是多种多样,有地震、重磁电、录井、测井以及各种各样的测试数据。

这些数据在不同的尺度上表征着地下的情况,往往具有很强的不确定性和多解性,所以业务专家很难在处理如此繁杂、复杂数据的时候,完整、准确地解读所有信息,常规方法找油找气通常误差比较大而且周期相当长。

在数据驱动的人工智能时代,就有可能用全新的思路和方法来解决找油找气的难题。企业级的AI,成为AI油气勘探使能的基矗有了AI平台才可以把油气行业长期积累的各种专业知识与AI相结合,这样就可以在油气全产业链上来实现大量的智能应用,以点带面来推动石油工业进入智能化的时代。

以华为的ModelArts为代表的企业级AI平台,可以帮助行业专家在短时间内掌握AI开发的能力。以ModelArts为核心的油气智能体在地震解释等方面,已经进行了一些探索与实践并且取得了初步的成效,为油气行业AI的应用迈出了坚实的第一步。油气智能体可以提供感知、认知、决策等关键技术,帮助开发具有油气行业特色的AI模型,油气智能体还可以融入一系列的智能工作流,将模型融入到业务流程中,实现AI在油气行业产业链各个环节的落地,从场景上来实现行业专家的协同与共享,大幅度提升工作效率。

利用油气智能体进行地震解释场景的一个实践地震勘探采用人工方法激发地震波,地震波在向地下传播的过程中间,遇到不同的地层可以发生反射并且传回地表。接收装置在地表采集到地震信号,然后计算机处理这些信号并且进行成像。

利用油气智能体提供的AI使能工具,就可以通过对海量数据训练出AI模型,在成像后的地震数据中找出断层。同样也可以利用AI模型,从地震数据中找到连续的层位,从而构建出地层模型的基本骨架。

通过地震勘探得到的基本骨架还不足以全面反映地层的各种性质,还需要结合测定仪器在井筒中测量获得的各种数据,以确定地层的岩石物理性质。

利用地震数据得到的骨架和测定数据建立的初始模型,再利用深度学习技术,就可以对地震测井数据与油气场之间的复杂关系进行精确的刻画,从而对油气储层参数进行准确的预测,预测出来的油气储层参数,就可以实现AI找油找气。

基于油气智能体把AI应用到地震勘探领域,但深度学习需要大量带有标注的序列样本,地震数据人工标注成本高、质量差,有时候甚至是不可能做到的。为了解决数据标注的问题,可以把地震知识融入到数学模型,建立模拟仿真,生成大量的断层样本数据,这样的仿真方法可以大幅度减少人工参与的程度,提升样本标注的效率。的强大算力可以训练海量仿真样本,实现基于AI的地震解释,帮助专家提高解释效率,所需的时间由原来的数个月可以减少到几小时。

储层预测是一个复杂的跨学科和多学科的问题,利用油气智能体进行多模态数据建模,并与专家知识进行融合来解决这一难题。将地震解释的结果与测井数据、行业专家经验进行融合,通过AI进行行业知识的表征,用以模型的推理,可以得到精确的储层参数的预测结果。

油气智能体在石油工业有着更加广泛的用途,借助油气智能体在上游的勘探、开发与生产,未来可以实现智能油气田,在中游的管道与储运可以实现智能物流和智能仓储,在下游的炼化和销售可以实现智慧工厂、智慧加油站等应用场景。

油气智能体将掀起石油工业的变革浪潮,人工智能正在推动石油行业的数字化发展和智能化发展。降本、增效、提质,AI将引领石油工业的未来。(文/云科技时代)

【以上基于中国石油大学人工智能学院在华为全联接2020大会上的介绍】

Copyright © 2016-2025 www.robotxin.com 人工智能机器人网 版权所有 Power by