议题大全|AI Conference 2019北京站重磅回归!

人工智能 2021-06-01 09:38www.robotxin.com人工智能专业

2019年6月18日至21日,“AI Conference 2019北京站”大会将在北京国际饭店会议中心盛大举行。“AI Conference”由OReilly和Intel联合主办,2018年的全球四站会议曾引起人工智能领域广泛关注和普遍好评。此次北京站大会也是今年这个全球瞩目的盛会即纽约站后的重磅回归。大会一如既往地将关注重点放在人工智能的实际应用上,宗旨就是为了弥合人工智能研究领域与产业商业应用之间的现实差距。

本次大会将硅谷与中国融合在一起,创造了一次全球人工智能专家难得的相聚。会议主题及相关议题的演讲者为来自各大公司、企业,以及国内外著名高校的人工智能专家,包括谷歌、Intel、Facebook、Uber、微软、阿里巴巴、亚马逊、中国人寿、美团、SAS、Unity、SalesForce、IBM、MIT、伯克利、斯坦福、清华大学等。

在这里你可以仔细剖析案例,深入钻研最新研究成果,学习如何在自己项目中实现人工智能,分享在智能工程和应用中正在出现的最佳实践,揭示人工智能的局限及未被发掘的机遇,并参与讨论人工智能将会如何改变商业世界的版图。无论你的关注点在哪里,都将在本次大会上找到

  • 企业中的人工智能执行简报,案例研究及用例,行业特定应用等。
  • 人工智能对商业及社会的影响自动化,安全,规范等。
  • 实施人工智能项目应用,工具,架构,安全等
  • 与人工智能交互设计,指标,产品管理,机器人等。
  • 模型及方法增强及,TensorFlo,深度学习,GAN,及理解,,计算机视觉等。
那么本次大会上将会有哪些令人期待的专家大咖和引人入胜的精彩内容呢?让我们一起先睹为快

卓越的主题演讲者(持续更新中)

Ion Stoica

加州大学伯克利分校EECS教授,RISELab主任。与Ali Ghodsi等人联合创立Databricks公司并兼任执行主席。ACM研究员。

贾扬清

加州大学伯克利分校计算机科学博士。目前担作阿里计算平台掌门人,Caffe、TensorFlo、Caffe2、ONNX 和 PyTorch 1.0的作者或共同作者。

Pete Warden

Google Brain团队移动和嵌入式TensorFlo Group技术主管。O'Reilly Media 《公共数据手册》和《词汇表》作者,OpenHeatMap和 Data Science Toolkit以及其他开源项目的构建者。

Maria Zhang

Linkedin工程副总裁,IDGCapital创业合伙人。

Tim Kraska

麻省理工学院计算机科学与人工智能实验室副教授,研究重点是构建和使用系统。2017年大部分时间,Tim在Google Research工作,与MLX和Brain团队一起发明了学习型索引结构的概念。

Michael James

Cerebras Systems的创始人兼首席软件架构师。AMD的研究员。

出色的培训课

时间618日(周二)和619日(周三)

Jike Chong(Tsinghua University|Acorns), 黄铃(Tsinghua University), 陈薇(排列科技)

量化互联网金融信用与反欺诈风控

本培训课基于清华大学交叉信息研究院开设的一门“量化金融信用与风控分析”研究生课。其中会用LendingClub的真实借贷数据做为案例,解说一些具体模型的实现,帮助学习者了解数据科学在互联网金融领域里在个人信用评估的价值;了解个人信用领域真实的数据科学流程和考虑方面;了解信用模型搭建中多种挑战的解决方案。

Rich Ott(The Data Incubator)

Deep Learning ith PyTorch(使用PyTorch进行深度学习)

PyTorch是一个用于Python的库,允许用户以极大的灵活性构建深度。 其易于使用的API和GPU的无缝使用使其成为深度学习的热门工具。 本课程将介绍PyTorch工作流程并演示如何使用它。学习者将掌握使用真实数据集构建深度学习模型的知识。

Season Yang (McKinsey & Company)

Deep Learning ith TensorFlo(使用TensorFlo进行深度学习)

TensorFlo库提供了计算图形的使用,可以跨资源自动并行化。该架构非常适合实现。本培训课程将介绍TensorFlo的Python功能。它将逐步从构建算法转向使用TensorFlo提供的Keras API和几个动手应用程序。

Jesse Anderson (Big Data Institute)

Professional Kafka development(专业的Kafka开发)

Jesse Anderson将带领大家深入研究Apache Kafka。学习者将在本课程中了解Kafka是如何工作的,以及如何用它创建实时系统。,学习者还将了解如何在Kafka中创建消费者和发布者,以及如何在探索Kafka生态系统时如何使用Kafka Streams,Kafka Connect和KSQL。

实用的教学辅导课

时间619日(周三)

Alejandro Saucedo(The Institute for Ethical Ai & Machine Learning)

A practical guide toards explainability and bias evaluation in machine learning(中可解释性和偏差评估的实用指南)

学习者将获得关于中偏见概念的高层次的哲学概述,这将有助于消除歧义,并在面对实际情况时简化挑战。从技术角度来看,学习者将深刻了解到评估模型整个生命周期偏差的3个关键步骤,了解如何在实际示例中使用关键概念,如特征重要性,类不平衡,模型分析,部分依赖性等,以及这些数据科学基础设施如何用于与关键领域专家的互动之中。

Yijing Chen(Microsoft),Dmitry Pechyoni(Microsoft),Angus Taylor(Microsoft), Vanja Paunic(Microsoft), Henry Zeng(Microsoft)

基于深度学习的时间序列预测

在本课程中,学习者将1.了解卷积和递归的基础知识及其在时间序列预测中有效的高级架构。2.了解何时在时间序列预测中使用深度学习模型而不是传统的时间序列模型。3.了解对于构建时间序列预测的成功深度学习模型非常重要的一些技术和技巧。4.获取使用Keras训练和调整时间序列预测深度学习模型示例的源代码。

Zhichao Li(Intel)

Analytics ZooApache Spark上的分布式TensorfloKeras

“Analytics Zoo”提供统一的分析+ AI平台,可将Spark,TensorFlo,Keras和BigDL程序无缝集成到一个集成的管道中; 然后,整个管道可以透明地扩展到大型Hadoop / Spark集群,以进行分布式培训或推理。

在本课程中,学习者将了解如何构建和生成的深度学习应用程序(例如,基于转移学习的图像分类,降水临近预报的序列到序列预测,推荐的神经协同过滤,无监督的时间序列异常检测等)以及使用Analytics Zoo的真实用例(如JD.,MLSListings,世界银行、银联、美的/ KUKA等)

Zhen Zhao(Intel)

英特尔OpenVINO加速从边缘到云的深度学习推理和计算机视觉

在本教学课程中,学习者将学习英特尔OpenVINO™工具包的结构和工作流程,两个用于深度学习部署和计算机视觉的模块,异步和异构计算的优化方法,低精度(INT8)推理,带性能库的指令集加速,以及OpenVINO内部的分析工具。 我们还将通过将英特尔OpenVINO集成到商业和工业应用中来讨论视频分析解决方案。

Chris Butler(IPSoft)

Design Thinking for AI

目的、明确的问题和人们的信任是任何系统的重要因素,特别是那些使用人工智能的系统。Chris Butler引导您通过借鉴设计思维原则的练习,帮助您创建更有效的解决方案和更好的团队协作。

Sujatha Sagiraju (Microsoft), Henry Zeng(Microsoft)

通过自动化民主化和加速AI落地(Democratizing and Aelerating AI through Automated Machine Learning)

人工智能提供的智能体验对用户来说就像魔术一样。,开发它们相当麻烦,包括一系列连续的、相互关联的决策,这一过程非常耗时。如果有一个自动服务可以识别给定问题/数据的最佳管道,该怎么办?自动就是这样!

Richard Lia(UC Berkeley RISELab)

Building reinforcement learning models and AI applications ith Ray

Ray是一个通用的集群编程框架。我们将深入研究Ray,引导您了解其API和系统架构,并共享应用程序示例,包括一些最先进的人工。

精彩纷呈的议题演讲

注因篇幅有限,此处只列讲师和议题,详情请见官网

时间620日(周四)

刘怀军(研究员, 美团)AI技术在外卖个性化场景中的落地与思考

David Lo(Pand.ai)The Unreasonable Effectiveness of Transfer Learning on NLP

刘祁跃(爱奇艺)视频精彩度分析及智能创作

Tao Lu(Microsoft), Chenhui Hu(Microsoft)使用扩张卷积预测客户活动用例和最佳实践

(UC Berkeley)Efficient Deep Learning for the Edge(高效的边缘深度学习)

(Microsoft), (Microsoft)ONNX:开放和互操作平台让AI无处不在

(Google)The future of machine learning is decentralized

(Abakus 鲸算科技(Wecash闪银))A Humane AI Solution to Improve Debt Collection

(Clobotics)Toards Automatic Product Recognition for Smart Retails

(Google)TensorFlo 2.0中令人兴奋的新功能

(Publicis Sapient), (Publicis Sapient)Industrialized Capsule Netorks for Text Analytics(用于文本分析的工业化胶囊网络)

(宜信创新中心)线上财富管理领域中的AI应用

(IBM), (Skylinerunners)Using deep learning and time-series forecasting to reduce transit delays

(微软亚洲研究院)自动(automated machine learning)技术的实践与应用

(Bloomberg)Trading strategies using Alternative data and Machine Learning

(Intel),(Office Depot),(Intel),(Office Depot)Real-time product remendations leveraging deep learning on Apache Spark in Office Depot

(Binah.ai)Hacking Humans Made Easy: Signal Processing + AI + Video

(云从科技)打造A.I.闭环引领产业变革

(Clobotics)人工智能如何彻底改变风电行业

(Intel)Spark上使用人工智能玩游戏

时间6月21日(周五)

(Facebook)Bringing Research And Production Together With PyTorch 1.0

(Intel)Analytics Zoo: Distributed TensorFlo in Production on Apache Spark

(Salesforce Einstein)Achieving Salesforce-Scale Machine Learning in Production

(Perceptin 深圳普思英察科技有限公司)技术是如何应用于新潮传媒、新零售行业

(TutumGene)人工智能与基因组学的结合加速理解我们的基因构成,并利用基因组编辑来革新医学

(Tencent)Sparkling: 基于Apache Spark进行一站式

(China Tele BestPay Co., Ltd)中国电信如何利用Adversarial AutoEncoder打击金融诈骗

(Intel)在边缘实现深度学习

(Skillman Consulting)深度预测时间序列深度学习一年回顾

(Qiniu), (Alluxio)AVA: a Cloud-Native Deep Learning Platform at Qiniu

(Rakuten, Inc.), (Rakuten, Inc.)Best practice of building data science platform in Rakuten

(透彻影像)人工智能病理影像辅助诊断系统——从方法到落地

(TigerGraph)非监督学习在大规模图谱上的案例应用和开源算法剖析

(Google)ML OPSKubeflo管道

(Uber)查询地球Uber的地理空间分析

(IBM), (IBM)在集合平台上的人工智能管道

(DataVisor)运用自动化AI技术打击智能化网络欺诈

(Alibaba), (Alibaba)PAI张量加速器和优化器——又一个深度学习编译器

(ING)AIING数据驱动型企业的成因,方式和内容

(中国人寿研发中心)保险中的实践

(Go-jek), (Go-jek)使用ML做个性化食物推荐议

(中国地质科学院矿产资源研究所)基于目标检测的智能化成矿异常信息提取

(Intel)Intel架构的低精度推理

大会主题演讲嘉宾和议题演讲内容还在持续更新中,等到大会开幕的时候,还会新增哪些激动人心的大咖和内容呢?让我们拭目以待!

抢票参会

本届AI Conference 2019北京站已经开始注册,现在是早期优惠票价阶段(截止日期5月10日),搜索AI大会或人工智能大会,进入官网查看详情。

Copyright © 2016-2025 www.robotxin.com 人工智能机器人网 版权所有 Power by