人工智能与物联网的融合 或是未来十年最大创新
印奇分析,其中AI是核心技术能力,IoT是产业落地场景。“AI与IoT的融合,本质上就是将AI的能力注入IoT的场景之中,实现产业的数字化智能化改造,进而推动实体产业的高质量发展。”
印奇认为,为了更好地促进AI与产业的融合,应把握几个关键点。,要以打“移动靶”的心态,推动产业数字化发展。当前,中国科技创新能力不断取得新突破,无论是创新的速度还是创新的规模,都实现了历史性跨越。“但我们也意识到,与世界科技强国相比,我们还存在明显差距。一个突出的表现就是,虽然中国在消费侧的数字化水平独步全球,但在产业侧的数字化进程仍处于发展阶段。”他说,一个重要原因是,消费侧的科技创新往往聚焦于前端应用和商业模式的创新,这类创新就像打“固定靶”,即面对确定的目标与需求,开发特定的产品推向市场;产业侧的科技创新则更像打“移动靶”,需要与错综复杂的行业结合,需求高度不确定,技术落地周期长。,发展产业数字化,需要有长期耕耘的耐心,紧紧依靠基础研究、工程实践和产业创新的联动效应,才能满足动态和不确定的需求。
,印奇认为,应以“拉”为主、采取“推”“拉”结合的模式,促进AI与产业的融合。在他看来,科技创新可分为“推”和“拉”两种模式。过去,科技创新更多采用的是“推”的模式,即技术和产品创新过程始于研发,经过生产和销售,并最终推向市常整个过程完全由供给侧发起,市场和用户仅仅是产品创新的被动接受者。而以深度学习为基础的新一代AI技术,由于其本身就非常依赖于行业数据,与各行各业有着天然的联结,也必须在行业里找到落地场景。这就决定了AI技术的落地必须是“需求定义供给”,既要从用户需求出发进行技术和产品的研发,又要针对用户反馈对技术和产品作出调整,由此形成技术创新的价值闭环。采取以“拉”为主,“推”“拉”结合的模式,将大幅提升AI产业落地的效率。
,印奇表示,要以新型人才体系,加速AI的产业落地。“AI是典型的人才密集型行业。推动AI的产业落地,就必须拥有一批真正关注用户需求、懂得行业运行规律的行业专家。”他说,AI与产业的融合过程,对组织的密度和阵型提出了极高要求。
“一家AI企业不仅需要具备顶尖的AI技术研发人才,还需拥有大量具有行业视角和经验的人才。为此,AI企业需要搭建新型的人才机制和体系,形成多样性的人才梯队,让不同类型的人才在一个体系和框架下,相互融合、良性互动,从而实现技术、产品到行业解决方案的快速落地。”印奇称。
机器人技术
- 800多家中国机器人企业近半无产品
- 看看机器人在和你抢什么
- 马化腾、李彦宏等科技企业大佬们在贵阳大数据
- 机器人投入汽车产业园 探索机器人产业链
- 特斯拉 Cybertruck 电动皮卡换上黑色外衣,有望为
- 沁峰如何成为冲压机器人细分赛道国家专精特新
- 运动机器人智障了吗?
- Rivian 将投资 50 亿美元在佐治亚州建造电动汽车工
- 调查发布 - 制造业在疫情防控常态化下突围——
- 未来工业机器人的市场什么样的变化
- 进博会特斯拉展台最全预测 沉浸式体验智能制造
- 美国将中国电动汽车关税提高到 100%,极星 CEO 对
- DeepMind 联合创始人:交互式 AI 才会“改变人类”
- 把握发展趋势 推动机器人产业高质量发展
- AI入侵教师职业,这五类产品发展迅猛
- 他们用AI和食用植物创造“人工肉食”,你想尝尝