AI面临产业大考:落地虽难,但产业化路径已日渐

机器人技术 2021-05-31 09:22www.robotxin.com机器人技术

图片来源@视觉中国

文 | 脑极体

今天我们谈论AI,已经很少再提及下围棋、打游戏等“碾压人类”式的炸裂新闻,而是更关注AI如何与各行业相结合,创造真实的产业价值与经济效率。

近期,国际咨询公司Gartner 将“AI工程化”列为2021年度九大技术趋势之一,这也是继去年“AI民主化”入榜后,Gartner对AI技术做出预判。

作为AI 民主化技术趋势报告的主笔分析师,Gartner高级研究总监吕俊宽认为这两大趋势的核心都是让AI逐步走向产业。从案例式的单点项目,到千行万业的规模应用,AI走向产业其实包含了两层含义一是AI可以用规模化生产的方式来降低产业使用门槛,使技术成本可接受,即“AI民主化”;二是AI可以与具体的产业场景相融合,达成可靠、可见、可信的良性收益,即“AI工程化”。

但对于大部分人和企业来说,“未来所有公司都是AI公司”的愿景并不容易实现,从“技术概念”到产业落地,中间还横亘着广袤而空旷的未知地带。

今天,大家都希望AI会如同“水电煤”一样推动第四次工业革命来到我们身边,但真正惠及所有企业,让各行业都能加上AI这个内核,仍旧任重而道远。

自2018年初,Google发布Cloud AutoML至今,AutoML成为了微软、Facebook、AWS、BAT等巨头争相布局的重心,Gartner也将AutoML看做是AI产业化进程中不可或缺的关键要素。AutoML因何成为了巨头们的“新宠”,它又在推动“AI民主化”和“AI工程化”中充当了什么角色?

AI落地难成共识但产业化之路已日渐清晰

今天,AI为各行各业带来了效率提升、价值增长,让所有人都看到了AI的价值和潜力。伴随着AI技术的日臻成熟,AI正在快速进入“工业化”阶段。但人才缺失、实施复杂、周期过长、成果过高等客观因素,也造成了AI难产的局面。

想让AI真正的释放价值,或许可以从煤的发展历程中看出端倪。

19世纪,凭借煤炭能源的挖掘,英国迅速创造了一个令世界瞠目结舌的工业社会,一跃成为世界霸主。除了储煤量大以外,其中最关键便是实现了煤产业化。

具体表现为三点

1.提升了应用效率蒸汽机等高效率工具的发明与普及,让煤这一能源得以高效、规模化的应用。

2.完善的基础设施铁路、运河等的建设,让煤炭能够从矿区被运往更具商业价值的产业带。

3.打造产业带人才、工具、市场,紧密结合在技术半径内,形成产业带,让高效生产成为可能。

正是这些铺陈,才让煤得以真正成为工业革命中“动力和文明”(艾默生语)的象征。

如今,AI正有机会像煤一样,给人类社会带来天翻地覆的变化,这就让AI满足全社会规模化应用的能力,变得格外重要。在这一过程中,同样少不了“蒸汽机”、“铁轨”和产业带。

AutoML让AI价值跃点

在瓦特改造蒸汽机之前,英国煤矿普遍使用的是纽科门蒸汽机,需要消耗大量的煤来维持运转,也让矿区工人们不得不在严酷的环境中工作。改造后,新的蒸汽能效提升了四倍之多,从而让煤进入了高效利用时代,也让筋疲力尽的体力劳动者们得到了解脱。

AutoML的价值与蒸汽机一样。在最新发布的《AI for EveryoneAutoML 引领AI民主化之路》白皮书中,Gartner将其视为降低门槛、提升效率的利器。

简单来说,AutoML(自动)就是可以让企业或个人不用写一行代码,就训练出一个企业级的模型的技术。只需要按照说明,把训练数据都拖进AutoML系统里面,很快一个适用于自身应用的模型就训练好了。让中最耗时和最难的工作数据清洗、特征工程,变得轻松不少,甚至无需考虑了解AI复杂的原理。

对于渴望规模化、高效率应用AI的企业来说,这意味着不需要从源头去设计一个或是进行复杂的调参,最大程度地降低了的编程工作量,节约了AI开发时间;也意味着对专业数据科学家和算法工程师的依赖程度也有所降低,缓解与科技巨头“抢人才”的困扰。在、金融风控、工业制造等多个领域中,使用AutoML搭建的模型效果甚至超越了大多数算法工程师。

于是,我们看到了越多越多的企业和开发者加入到了AI产业化的行列中,以百度为例,其EasyDL已拥有70多万开发者,覆盖了20多个场景。更为欣喜的是,我们看到了没有一点AI甚至是编程背景的人将AI物尽其用妇产医院的医生基于AI独角兽第四范式的AutoML技术及产品,建立了新生儿体重预测和胎膜早破的预测模型,为产妇生产方案的制定提供更多依据,这在学术界证明了大气压与胎膜早破之间的紧密相关性,填补了这一领域的空白。

这些案例意味着AI开始进入低门槛、低成本、泛用性的工业生产阶段,得以快速落地企业,释放技术价值。

据Gartner的预测,2023年,40%的开发团队会使用自动化服务来构建为其应用软件添加AI功能的模型,而2019年这一比例不到2%。到2025年,AI将使50%的数据科学家活动实现自动化,从而缓解人才严重短缺问题。

这也是为什么,Gartner 认为AutoML是引领AI民主化,实现“AI for Everyone”的关键力量。

铺设铁轨通往产业智能的通衢

AutoML提升了AI的效能,但智能怎么才能够抵达产业端,却是一个大问题。也吸引了不少巨头和创业公司争相布局,它们的存在就像是铁轨与运河,将源源不断的技术能量运输到产业土壤中去。

目前来看,AutoML平台主要分为以下几大类

第一种,以谷歌、微软、亚马逊、百度等为代表的头部AI巨头,具有较强的AI实力,可以提供从算法到流程全自动化的工具支持。

第二种,是一些开源技术平台或组织。优势是灵活、开放,比如在谷歌发布AutoML之前,2013年就出现了可以自动选择模型并选择超参数的AutoWEKA。

第三种则是一些技术/算法公司,除了AutoML工具之外,还会面向企业提供数据策略、业务咨询等服务。

那么,它们都在向产业界提供哪些具体能力呢?

是平台和工具。比如谷歌推出的Google Cloud AutoML覆盖了图像分类,文本分类以及机器翻译领域,比如用户只需要上传图片到AutoML Vision上,就可以训练和部署一个计算机视觉模型。今年还展示了能够自动创建计算机视觉系统NASNet的能力,可以帮助或开发。

微软差不多和谷歌期发布了自己的AutoML平台,涵盖图像、视频、文本和语音等各个领域。

国内比较领先的如百度的EasyDL,用户可以在上面开展图像分类、物体检测、图像分割、文本分类、视频分类、声音分类等任务。代表厂商第四范式,打造的自动化平台Sage Hypercycle ML,也面向金融、零售、医疗、制造、能源等行业提供了多种封装好的AutoML算法及全流程开发工具。

是服务和定制。近两年来,AutoML领域也越来越注重定制化服务。比如今年1月,微软就针对视觉能力打造了自动化平台Microsoft Custom Vision Services(微软定制视觉服务)。谷歌也与产业端合作,利用谷歌云的AutoML Vision技术创建了能理解古埃及文字的工具Fapicius,来达到普及AI的效果。国内如第四范式也提出了“AutoML全栈算法”从感知、认知、决策三个关键维度帮助企业提升关键场景的决策水平,针对不同行业、不同技术能力的企业来有的放矢地提供服务。

如果说AutoML平台和工具降低了AI的应用门槛,加速了“AI民主化”的进程,那么服务导向的出现,则让人们看到“AI工程化”趋势的端倪。

这一变化背后的原因也很简单,回到第一次工业革命时期,我们会发现基础设施的铺设往往需要因地制宜,以庞大的工程将运河与铁轨不断延伸到东海岸。AI落地产业自然也不是一种平台或工具集就能够完成的。

一方面,许多巨头云厂商在推出AutoML平台的,也希望企业用户与自己的开发生态相捆绑,比如谷歌就要求必须在谷歌云上部署相关模型和网络,这对于无法或无意使用谷歌云的用户来说就成了限制。

,应用AI更是一个千变万化的复杂工程。要让毫无经验的个人和企业借助AutoML用上AI,需要与产业应用场景的深度适配,解决数据收集、数据清理、打通数据孤岛等等障碍,才能让AI在业务端跑起来。这些都需要懂业务的行业人士和算法人员来共同探讨、磨合,去建立符合产业需求的技术管道。

只有一个充分考虑不同产业地带客观环境与具体诉求的“交通网络”,才能驱动AI正在走到产业那边去。

靠近价值AutoML产业带的兴起

对于企业来说,应该如何考量和适时使用AutoML来提升“AI产能”呢?

从企业视角出发,我们认为有三个关键要素是需要注意的

1.是否具有AutoML落地的配套服务能力。

每个厂商期待的自动化、智能化是不一样的,企业在选择AutoML平台时需要考察其服务能力与背景。

吕俊宽认为,对于企业来说,如何帮助自己提高业务价值是关键,但不是每家企业都能像互联网巨头一样能够让AI与业务深度耦合,所以需要AI厂商有强大的服务能力支撑企业客户兑现AI的价值。对于AI企业来说,想要服务好企业,对产业服务的重视会直接决定其技术上的投入程度,对产业迫切需要的能力亦需要快速迭代;应当深入了解客户的业务场景,帮助其提升关键的业务指标和表现。有的业务适合上云、有的适合产品化服务,AI规模化应用后如何解决计算成本上升问题,是否需要自建AI系统等等,这些需要在不同选项里找到平衡点。

Gartner的AutoML白皮书也指出,顶尖的AutoML算法相当于AI应用构建的“引擎”。而AI应用的开发是一项非常复杂的精细化工程,涉及诸多环节。假如没有一套完整的AI开发工具,各个环节就会变成彼此割裂、互不兼容的“孤岛”,不仅导致科学家在开发过程中疲于奔命,也会让AI规模化变成“泡影”。只有打造基于AutoML算法“引擎”的“自动化工厂”,实现全面产品化,才能真正推动AI产业化落地。

擅长于个人C端市场的谷歌在AutoML上的投入程度和研发频率相对于其他子业务(如DeepMind)就要少的多,更重视极客和工程师思维;国内如百度在推广EasyDL时,也十分重视对开发者和企业的帮助,和服务体系的打造,支持初中生、中年个体户、电网企业等零门槛用上AI;第四范式的策略则更加细致,根据不同技术成熟度的企业,提供不同应用的AI产品和方法论,让AI产品得以更好使用和落地。例如,面对想要快速验证AI效果、快速落地的客户,可以选择Sage HyperCycle ML,某金融企业就用这种方式让毫无AI模型构建经验的金融企业在几小时内完成建模工作;而面对体量大、场景多的客户,第四范式也可通过先知等平台化产品,让客户自主、规模化、低门槛落地AI应用,,也嵌入了相应的AI服务支撑体系。

2.如何以较低的成本得到较好的效果。

如果说“AI民主化”是让更多人了解和感受到AI和AutoML能做什么,那么“AI工程化”则要求AI规模化落地的,还能够带来更系统性的业务价值。

第四范式副总裁、主任科学家涂威威告诉我们,企业在使用AutoML时有三个考量点业务收益和效果、成本支出、解决问题的范围,只有这三点都满足企业端的要求,才能让AutoML切实有效地帮助AI加速规模化应用进程。

比如算法上需要提升效果,给业务带来实际增长点,让模型面对各种真实复杂情况都能快速识别,而非只是停留在实验室阶段;

许多企业也会面临一个问题,就是在线下效果好,而部署到真实环境中,效果大打折扣。这就需要注重线上线下数据一致性的问题,并做出相应的优化;

成本方面,AI如何跟现有业务结合、如何部署到环境中去,计算资源怎么解决,都是需要去考虑的。AutoML在帮助AI规模化落地的,也带来了巨大的算力消耗,如果采用业界常用的GPU甚至是TPU,绝大多数的企业都是负担不起的。,为了让AI更好的规模化,还需要软硬件协同优化,让部署AI的成本变成“可负担”。

3.是否具有扩展性。

我们知道,技术产品和架构总是会不断迭代更新的,如果需要全盘推倒重来,无疑会给企业带来没有必要的损失,这也让很多企业对AutoML等新型生产力工具望而却步。

这就需要AutoML平台和厂商在一开始就考虑到技术的扩展性并进行应对。

比如百度EasyDL就借助百度大脑的全栈AI能力实现底层技术的全面部署与融合;第四范式通过技术解决模型的自学习问题,让动态模型可以根据业务变化而进化,进行自动化迭代。,第四范式还将AutoML相关架构、技术抽象成了操作系统,这就从底层核心将技术框架稳定下来,让各项数据和应用可以被标准化管理,后续运维也可以通过系统层来应对变化,从而让企业可以建立更长期的AI战略,不会因为技术变化而让业务受到波动。

当企业、技术、平台等等都汇聚在一起,形成了完整的AutoML产业带,生态也就开始真正建立起来,最终拉开一个恢弘的产业智能时代大幕。

从这一刻,写下未来

如果说是煤工业的崛起,带领人类穿越了漫长的工业童年时代,开始了一个史无前例的时代,那么随着国家战略的推动和产业需求的全面爆发,AutoML带来的产业智能红利是否会像煤炭一样,引发一场新的产业革命?

AI的产业大考暴露了人才短缺、成本高昂等问题,又推动了AutoML这样解决方法的产生,由此带来的AI民主化和工程化浪潮,正在将全社会带入智能变革的疆域。

其中最值得注目的,是中国企业表现出了对科技前所未有的饥饿感,依靠技术来找寻业务增长点,急切地寻找技术场景和落地,这些积极的做法都让AI的红利更早、更快地生长在这片土地上。

Copyright © 2016-2025 www.robotxin.com 人工智能机器人网 版权所有 Power by