隐私数据在隐私AI框架中的安全流动

机器人技术 2021-06-01 08:26www.robotxin.com机器人技术

作者 | Rosetta技术团队

责编 | 晋兆雨

出品 | AI科技大本营

本文中,我们将介绍为了保护用户的隐私数据,在隐私 AI 框架的计算任务全流程中,数据是如何以密文形式流动,仍正确完成加法、乘法等计算步骤的。

隐私 AI 系统存在的目的就是赋能 AI,使得各种 AI场景下对用户隐私数据的使用都是安全的。那么,这样的系统就需要提供充分的保障,从理论到工程实现的每一个阶段都应该是经得起推敲、抵抗得住各种 攻击的。不能简单的认为只需要各方先在本地自己的数据上计算出一个模型,然后将模型结果交换一下 计算下其模型参数的平均值,就不会泄露各方的隐私数据了。现代密码学(Cryptography)是建立在严格的数学定义、计算复杂度假设和证明基础之上的,其中MPC (Multi-Party Computation)方向是专门研究多个参与方如何正确、安全的进行联合计算的子领域,Rosetta、TFEncrypted等隐私 AI框架都采用了 MPC技术以提供可靠的安全性。下面我们就结合具体案例看的看下在Rosetta中隐私数据是如何得到安全保护的。

案例

Alice,Bob和 Charley三人最近需要在他们的 AI系统中引入对数据的隐私保护能力。他们很重视安全性,所以他们想通过一个简单的例子 乘法(multiply),来验证下隐私 AI 框架是否真正做到了隐私安全。

他们约定Alice的输入为1.2345;Bob 的输入为5.4321;而 Charley拿到相乘的结果。他们按照Rosetta提供的教程,快速编写了如下代码(脚本名为 rosetta-mul.py)

接着,他们各自打开一个终端,分别进行如下操作

Alice ( P0) 在终端敲下如下命令行,并根据提示输入自己的私有数据

Bob ( P1) 执行同样的操作,输入的也是只有自己才知晓的私有数据

Charley ( P2) 在终端敲下如下命令行,等一会儿就可以得到所期望的计算结果

对于 Charley来说,由于没有数据,故不会提示输入。

Alice和 Bob的本地输出都会是 z:[b'0.000000'], 而不会拿到正确的结果。

如果想让误差更小,可以通过配置提升精度,或使用128-bit 的数据类型。

上面短短的几行代码,虽然结果是正确的,他们三人对于系统安全性方面仍有一些困惑

Alice、Bob的私有输入会不会被两方知道?

Charley拿到的结果会不会被 Alice、 Bob知道?

整个程序运行过程中,有没有其他数据的泄漏?

如果前几问的回答都是否定的,那 Charley 又是如何得到明文?

在回答这些问题之前,为简化描述、突出本质,我们需要简单介绍一下MPC实际落地中常用的安全假设。

假定系统中有 3 个节点, P0/P1/P2,其中成P0/P1为数据参与方,而P2是辅助节点,用于随机数生成。

只考虑半诚实( Semi-Honest )安全模型,即三方都会遵守协议执行的流程,并且其中诚实者占多数( Honest-Majority),也就是说三个节点中只会有一个“坏人”。更为复杂的恶意( Malicious)模型等安全场景可参考其他相关论文。

内部数据类型为64位无符号整型,即uint64_t。

下面我们就按照输入--计算--输出的顺序,详细介绍 Rosetta 中数据的表示与流动,以及所用到相关技术与算法在工程上的优化实现。

隐私数据的输入

隐私计算问题,要解决的是隐私数据的输入。

在上述案例中,是通过如下两行代码来完成私有数据的安全输入的

如代码所示, rtt.private_console_input是 Rosetta 众多 API 之一,Rosetta还提供了rtt.private_input,等 API,用来处理隐私数据的输入。

这里发生了什么?x,y 的值会是什么?

在进入剖析之前,先来了解一个重要的概念 秘密分享。

秘密分享

什么是秘密分享(Secret Sharing)[1]?先来看一种简单的两方additive的构造

给定一个数 x,定义 share(x)= (x0, x1) = (x r, r),其中r是随机数,并且与x独立。可以看到, x = x0 + x1 = x -r + r。原始数据x的秘密分享值(x0,x1)将会由两个数据参与方 (P0,P1) 各自保存。

在秘密分享的方案中,所有的数据,包括中间数值都会分享在两个参与方之间。直观的看,参与的两方不会得到任何的明文信息。理论上,只需要在环上支持加法和乘法,就可以进一步通过组合来支持上层各种更复杂的函数。下文我们会看到关于乘法的详细解析,读者可以回过头来再看 这段话。

那工程上是如何处理的呢?假设P0有一个私有数据x,三方之间可以简单交互一下实现

方案1生成一个随机数 r,发送给 P0/P1。然后本地设置 x0 = x - r, P1 本地设置 x1 = r。此时 share(x) = (x0, x1) = (x - r, r),与上面的定义一致。

这是方案之一,后文基于这个方案进行讲解。在本文,我们会提一下实际落地时的进一步优化方案。

回到主线,结合方案1,我们以Alice 的输入值x = 1.2345为例看下具体过程。

第一步,浮点数转定点数。

对于有数据输入的一方,需要先将真实的浮点数转成定点数。

浮点数转定点数即浮点数乘以一个固定的缩放因子(scale,一般为2^k)使其变成定点数(取其整数部分,舍弃小数部分)。当需要还原真实的原始浮点数时,用定点数除以缩放因子即可。

我们先选定一个缩放因子,这里取scale= 2^(18)。

经过缩放后,得到 x = 1.2345 (1323616,用于后续计算。

这里是有精度损失的,但在精度允许的范围内,不会影响后面的计算。

第二步,生成随机数 r。也叫掩码(Maskingvalue),用来隐藏真实值。

p2生成一个随机数 r,是一个 64-bit 空间的无符号整数。(如,r = fdad72ecbfbefeb9。这里用十六进制表示,下同)

p2将r发送给P0,P1。此时,P0,P1都拥有一个相同的随机数r了。

第三步,设置秘密分享值。

按秘密分享方案1的定义, P0 本地设置 x0 = x - r, P1 本地设置 x1 = r。所以有

P0x0= 4f020-fdad72ecbfbefeb9 = 2528d134045f167

P1x1= fdad72ecbfbefeb9

4f020是 323616 的十六进制表示。

如果计算结果大于 64 bit 的空间范围,需要对结果取模(64 位空间)。下同。

至此,我们获得了关于x的分享值,share(x)=(x0,x1)=(x-r,r)=(2528d134045f167,fdad72ecbfbefeb9)

感兴趣的读者朋友可以验证一下(x0+x1)mod 。

同理,我们对Bob的输入值进行一样的处理。

上面三步,其实就是 private_console_input 的工作机制与过程。经过处理后,各方本地都存储着如下值

我们用 Xi,Yi 表示 X,Y 在 Pi的分享值。(下同)

P2 为何是0呢?在本方案中 P2 作为一个辅助节点,不参与真正的逻辑计算。

我们可以看到,在处理隐私数据输入的整个过程中, P0无法知道 Y 值, P1 无法知道 X 值, P2 无法知道 X 或 Y 值。

,我们一下这三个主要阶段

密文上的协同计算

这是计算的核心。

上一步,我们保证了输入的安全,没有信息的泄漏,各方无法单独拿到其他节点的私有输入。接下来,看一下计算的代码,只有一行

在这个计算的过程中发生了什么?下面结合乘法(Multiply)算子原理进行实例讲解。

Multiply 算子原理

乘法相对较为复杂,我们结合经典的Beaver Triple方法[2]加以介绍。该方法是由密码学家Donald Beaver在 1991 年提出,主要思想是通过乘法。协议基本原理如下

输入P0 拥有 X,Y的秘密分享值 X0,Y0;P1拥有X,Y的秘密分享值 X1,Y1。

这里有 share(X) = (X0, X1),share(Y) = (Y0, Y1)。在此案例中,这里的输入,就对接上一节所述的"隐私输入"的输出结果。

计算步骤

1.P2 本地生成一组随机数A,B,C,且满足 C = AB。

A,B,C 的生成步骤P2 随机生成 A0,A1,B0,B1,C0,令 A = A0 + A1,B = B0 + B1,得到C= AB, C1 = C - C0。其中AI,BI,CI是 A,B,C 的分享值。这些都是在 P2本地完成的。这也就是 P2 做为辅助节点的作用(用于随机数生成)。

这里 A,B,C 一般被称为三元组(Beaver'sTriple)。

比如,某次生成的随机数如下

感兴趣的读者朋友可以验证一下。如 A = A0 + A1 =2373eddela0e5dcd + ad483b77e4e5db41 = d0bc2955fef4390e。这个 A 是个随机数。

2.将上一步生成的随机数的秘密分享值分别发送给P0,P1。

即将A0,B0,C0发送给P0;将A1,B1,C1发送给P1。

此时, P0,P1拥有如下值

3.P0 计算 E0 和 F0;P1 计算 E1 和 F1。并交换 Ei,Fi。

P0 本地计算 E0 = X0 - A0, F0 = Y0 - B0。

P1 本地计算 E1= X1 - A1, F1 = Y1 - B1。

此时, P0,P1拥有如下值

交 换 Ei,Fi。

P0将E0,F0发送给P1;P1将E1,F1发送给P0。此时,P0,P1都拥有E0,F0,E1,F1。

4.本地计算 得到 E和 F。

P0,P1 各自本地计算 E = E0 + E1, F= F0 + F1。

5.本地计算 Z0;P1本地计算 Z1。

现在, P0 已经拥有 A0,B0,C0,E,F;P1已经拥有 A1,B1,C1,E,F。有了这些就可以计算出 Z= XY 的秘密分享值 Z0,Z1了。即

P0 本地计算 Z0 = E B0 + A0 F+ C0;

P1 本地计算 Z1 = E B1 + A1 F+ C1 + E F。

正确性可以通过以下恒等式加以验证

输出P0,P1分别持有 Z = X Y的秘密分享值 Z0,Z1。

我们可以看到,从输入到计算再到输出,整个过程中,没有泄漏任何隐私数据。

整个算子计算结束时,P0单独拥有X0,Y0,A0,B0,C0,E0,F0,E1,F1,E,F,Z0,P1单独拥有X1,Y1,A1,B1,C1,E0,F0,E1,F1,E,F,Z1,P2单独拥有A0,B0,C0,A1,B1,C1,三方都无法单独得到 X 或 Y 或 Z。

,我们一下(1~5 对应着上面的步骤)

获取明文结果

输入到计算再到输出,各节点只能看到本地所单独拥有的秘密分享值(一些毫无规律的64位随机数),从上文也可以看到,节点是无法独自得到任何隐私数据的。那么,当计算结束后,如果想得到结果的明文,怎么获取呢?

Rosetta提供了一个恢复明文的接口,使用很简单。

那这个 rtt.SecureReveal 是如何工作的呢?

其实非常简单如果本方想要知道明文,只需要对方把他的秘密分享值发给我,然后本地相加即可。

比如,上一节结尾处,我们知道了各方(P0/P1/P2)的分享值如下

结合实例,Charley(P2)想要获取结果明文,那么,P0,P1将各自的分享值Z0,Z1发给P2,然后P2本地相加即可。即: 1db35d14c12a + ffffe24ca30611b0 = 1ad2da(1757914)。我们将此值进一步再转换为浮点数,就可以得到我们想要的用户态的明文值了:1757914 / (1

效率优化

上面介绍的秘密分享 与 multiply 算子都是基于最基本的算法原理,在时间上和通信上的开销还是比较大的,在实际工程实现中,还可以进一步进行优化以提升性能。在介绍优化方案之前,先了解一下什么是PRF[3]?

PRF[3],Pseudo-Random Function。简单来说,即给定一个随机种子 key,一个计数器 counter, 执行 PRF(key, counter) ,会得到一个相同的随机数。

补充说明一下。例如, P0,P1 执行 PRF(key01,counter01),会产生一个相同的随机数。这里的 key01, counter01 对于的 P0,P1 来说是一致的。程序会维护这两个值,对使用者来说是透明

关于秘密分享

来看看优化版本(假设P0有一个私有数据x)。

方案2(优化版):P0,P1使用 PRF(Key01,counter) 本地生成一个相同的随机数r。然后P0本地设置x0=x-r,P1本地设置x1=r。此时 share(x) = (x0,x1)x=(x = r.r),与定义一致。此版本无需 P2 的参与。没有通信开销。

目前 Rosetta 开源版本中使用的正是此方案。

方案3(优化版):P0设置 x0 = x-r, P1 设置 X1 = 0 即可。此时 share(x) =(x, 0)。此版本无需 P2 的参与。没有通信开销,也没有计算开销。

上述各个版本(包括方案1),都是可行且安全的。可以看到P1/P2并不知道 P0 的原始输入值。

关于 Multiply 算子

Multiply 算子中输入,输出部分没有变化,主要是计算步骤中的第1步与第2步有些许变化,以减少通信量。这里也只描述这两步,其余与前文相同。

在上文的描述中,我们知道 P2 生成三元组后,需要将其分享值发送给P0,P1。当我们有了 PRF 后,可以这么做

P0,P2 使用PRF(Key02,counter02)生成 A0,B0,C0;P0,P1使用RF(Key12,counter12)生成 A1,B1。

然后,P2令A=A0+A1,B=B0+B1,得到C=AB,C1=C-C0。P2将发送给P1。P2的任务完成。

目前 Rosetta 开源版本中使用的是此方案。

相比于原始版本,优化版本只需要发送 C1,不用再发送 A0,A1,B0,B1,C0。

在 Rosetta中,我们还针对具体的各个不同的算子进行了一系列的算法、工程优化,欢迎感兴趣的读者来进一步了解。

小结

安全性是隐私 AI框架的根本,在本篇文章中,我们结合隐私数据输入的处理和密文上乘法的实现,介绍了“随机数” 形式的密文是如何在多方之间流动,“神奇”的仍能保证计算逻辑的正确性的。我们这里对于安全性的说明是直观上的描述,而实际上,这些算法的安全性都是有严格数学证明的。感兴趣的读 者可以进一步去探索相关的论文。

Rosetta 将持续集成安全可靠的密码学算法协议作为“隐私计算引擎”到框架后端中,也欢迎广大开发者参与到隐私AI 的生态建设中来。

作者简介

Rosetta技术团队,群专注于技术、玩转算法、追求效的程师。Rosetta是款基于主流深度学习框架TensorFlo 的隐私AI框架,作为矩阵元公司规模商业落地的重要引擎,它承载和结合了隐私计算、和AI三种典型技术。我们专门为AI从业者撰写了隐私计算+AI从技术到实战的全教程,力图让相关行业从业者0难度一键掌握隐私计算技术的用法

参考文献

[1] 秘密共享,

https://en.ikipedia./iki/Secret_sharing

[2] Beaver,Donald."Efficientmultipartyprotocolsusingcircuitrandomization."Annual InternationalCryptologyConference.Springer,Berlin,Heidelberg,1991.

[3] PRF的一个简单介绍

https://crypto.stanford.edu/pbc/notes/crypto/prf.html

Copyright © 2016-2025 www.robotxin.com 人工智能机器人网 版权所有 Power by