深度学习框架Caffe解析:从代码层面定制新功能

机器人培训 2021-05-31 12:29www.robotxin.com机器人培训
本文作者薛云峰,主要从事视频图像算法的研究,于浙江捷尚视觉科技股份有限公司担任深度学习算法研究员。

相信很多小伙伴和我一样使用了很长时间的Caffe深度学习框架,也非常希望从代码层次理解Caffe的实现从而实现新功能的定制。本文将从整体架构和底层实现的视角,对Caffe源码进行解析。

1.Caffe总体架构

Caffe框架主要有五个组件,Blob,Solver,Net,Layer,Proto,其结构图如下图1所示。Solver负责深度网络的训练,每个Solver中包含一个训练网络对象和一个测试网络对象。每个网络则由若干个Layer构成。每个Layer的输入和输出Feature map表示为Input Blob和Output Blob。Blob是Caffe实际存储数据的结构,是一个不定维的矩阵,在Caffe中一般用来表示一个拉直的四维矩阵,四个维度分别对应Batch Size(N),Feature Map的通道数(C),Feature Map高度(H)和宽度(W)。Proto则基于Google的Protobuf开源项目,是一种类似XML的数据交换格式,用户只需要按格式定义对象的数据成员,可以在多种语言中实现对象的序列化与反序列化,在Caffe中用于网络模型的结构定义、存储和读龋

2.Blob解析

下面介绍Caffe中的基本数据存储类Blob。Blob使用SyncedMemory类进行数据存储,数据成员data_指向实际存储数据的内存或显存块,shape_存储了当前blob的维度信息,diff_这个保存了反向传递时候的梯度信息。在Blob中其实不是只有num,channel,height,idth这种四维形式,它是一个不定维度的数据结构,将数据展开存储,而维度单独存在一个vector<int> 类型的shape_变量中,这样每个维度都可以任意变化。

来一起看看Blob的关键函数,data_at这个函数可以读取的存储在此类中的数据,diff_at可以用来读取反向传回来的误差。顺便给个提示,尽量使用data_at(const vector<int>& index)来查找数据。Reshape函数可以修改blob的存储大小,count用来返回存储数据的数量。BlobProto类负责了将Blob数据进行打包序列化到Caffe的模型中。

3.工厂模式说明

接下来介绍一种设计模式Factory Pattern,Caffe中Solver和Layer对象的创建均使用了此模式,看工厂模式的UML的类图

如同Factory生成同一功能不同型号产品一样,这些产品实现了同样Operation,很多人看了工厂模式的代码,会产生这样的疑问为何不ne一个出来呢,这样ne一个出来似乎也没什么问题吧。试想如下情况,由于代码重构类的名称改了,或者构造函数参数变化(增加或减少参数)。而你代码中又有N处ne了这个类。如果你又没用工厂,就只能一个一个找来改。工厂模式的作用就是让使用者减少对产品本身的了解,降低使用难度。如果用工厂,只需要修改工厂类的创建具体对象方法的实现,而其他代码不会受到影响。

举个例子,写代码少不得饿了要加班去吃夜宵,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory。

4.Solver解析

接下来切回正题,我们看看Solver这个优化对象在Caffe中是如何实现的。SolverRegistry这个类就是我们看到的上面的factory类,负责给我们一个优化算法的产品,外部只需要把数据和网络结构定义好,它就可以自己优化了。

Solver<Dtype> CreateSolver(const SolverParameter& param)这个函数就是工厂模式下的CreateProduct的操作, Caffe中这个SolverRegistry工厂类可以提供给我们6种产品(优化算法)

这六种产品的功能都是实现网络的参数更新,只是实现方式不一样。那我们来看看他们的使用流程吧。这些产品类似上面Product类中的Operation,每一个Solver都会继承Solve和Step函数,而每个Solver中独有的仅仅是ApplyUpdate这个函数里面执行的内容不一样,接口是一致的,这也和我们之前说的工厂生产出来的产品一样功能一样,细节上有差异,比如大多数电饭煲都有煮饭的功能,每一种电饭煲煮饭的加热方式可能不同,有底盘加热的还有立体加热的等。接下里我们看看Solver中的关键函数。

Solver中Solve函数的流程图如下

Solver类中Step函数流程图

Solver中关键的就是调用Sovle函数和Step函数的流程,你只需要对照Solver类中两个函数的具体实现,看懂上面两个流程图就可以理解Caffe训练执行的过程了。

5.Net类解析

分析过Solver之后我们来分析下Net类的一些关键操作。这个是我们使用Proto创建出来的深度网络对象,这个类负责了深度网络的前向和反向传递。以下是Net类的初始化方法NetInit函数调用流程

Net的类中的关键函数简单剖析

1.ForardBackard按顺序调用了Forard和Backard。

2.ForardFromTo(int start, int end)执行从start层到end层的前向传递,采用简单的for循环调用。

3.BackardFromTo(int start, int end)和前面的ForardFromTo函数类似,调用从start层到end层的反向传递。

4.ToProto函数完成网络的序列化到文件,循环调用了每个层的ToProto函数。

6.Layer解析

Layer是Net的基本组成单元,例如一个卷积层或一个Pooling层。本小节将介绍Layer类的实现。

(1)Layer的继承结构

(2)Layer的创建

与Solver的创建方式很像,Layer的创建使用的也是工厂模式,这里简单说明下几个宏函数

REGISTER_LAYER_CREATOR负责将创建层的函数放入LayerRegistry。

我们来看看大多数层创建的函数的生成宏REGISTER_LAYER_CLASS,可以看到宏函数比较简单的,将类型作为函数名称的一部分,这样就可以产生出一个创建函数,并将创建函数放入LayerRegistry。

REGISTER_LAYER_CREATOR(type, Creator_##type##Layer)

这段代码在split_layer.cpp文件中

REGISTER_LAYER_CLASS(Split)。

这样我们将type替换过以后给大家做个范例,参考下面的代码。

这里的创建函数好像是直接调用,没有涉及到我们之前工厂模式的一些问题。所有的层的类都是这样吗?不是,我们仔细观察卷积类。

卷积层怎么没有创建函数呢,不是,卷积的层的创建函数在LayerFactory.cpp中,截图给大家看下,具体代码如下

这样两种类型的Layer的创建函数都有了对应的声明。这里直接说明除了有cudnn实现的层,其他层都是采用第一种方式实现的创建函数,而带有cudnn实现的层都采用的第二种方式实现的创建函数。

(3)Layer的初始化

介绍完创建我们看看层里面的几个函数都是什么时候被调用的。

关键函数Setup此函数在之前的流程图中的NetInit时候被调用,代码如下

这样整个Layer初始化的过程中,CheckBlobCounts被最先调用,然后接下来是LayerSetUp,后面才是Reshape,才是SetLossWeights。这样Layer初始化的生命周期大家就有了了解。

(4)Layer的其他函数的介绍

Layer的Forard函数和Backard函数完成了网络的前向和反向传递,这两个函数在自己实现新的层必须要实现。其中Backard会修改bottom中blob的diff_,这样就完成了误差的方向传导。

7.Protobuf介绍

Caffe中的Caffe.proto文件负责了整个Caffe网络的构建,又负责了Caffemodel的存储和读龋下面用一个例子介绍Protobuf的工作方式。

利用protobuffer工具存储512维度图像特征

1.message编写新建txt文件后缀名改为proto,编写自己的message如下,并放入解压的protobuff的文件夹里;

其中,dFaceFeatSize表示特征点数量;pfFaceFeat表示人脸特征。

2.打开indos命令窗口(cmd.exe)---->cd空格,把protobuff的文件路径复制粘贴进去------>enter;

3.输入指令protoc .proto --cpp_out=. --------->enter

4.可以看到文件夹里面生成“ .pb.h”和“.pb.cpp”两个文件,说明成功了

5.下面可以和自己的代码整合了

(1) 新建你自己的工程,把“ .pb.h”和“.pb.cpp”两个文件添加到自己的工程里,并写上#include" .pb.h"

(2) 按照配库的教程把库配置下就可以了。

VS下Protobuf的配库方法

解决方案---->右击工程名---->属性

使用protobuf进行打包的方法如下代码

(1)Caffe的模型序列化

BlobProto其实就是Blob序列化成Proto的类,Caffe模型文件使用了该类。Net调用每个层的Toproto方法,每个层的Toproto方法调用了Blob类的ToProto方法,这样完整的模型就被都序列化到proto里面了。只要将这个proto继承于message类的对象序列化到文件就完成了模型写入文件。Caffe打包模型的时候就只是简单调用了WriteProtoToBinaryFile这个函数,而这个函数里面的内容如下

至此Caffe的序列化模型的方式就完成了。

(2)Proto.txt的简单说明

Caffe网络的构建和Solver的参数定义均由此类型文件完成。Net构建过程中调用ReadProtoFromTextFile将所有的网络参数读入。然后调用上面的流程进行整个caffe网络的构建。这个文件决定了怎样使用存在caffe model中的每个blob是用来做什么的,如果没有了这个文件caffe的模型文件将无法使用,因为模型中只存储了各种各样的blob数据,里面只有float值,而怎样切分这些数据是由prototxt文件决定的。

Caffe的架构在框架上采用了反射机制去动态创建层来构建Net,Protobuf本质上定义了graph,反射机制是由宏配合map结构形成的,然后使用工厂模式去实现各种各样层的创建,区别于一般定义配置采用xml或者json,该项目的写法采用了proto文件对组件进行组装。

以上为Caffe代码架构的一个总体介绍,希望能借此帮助小伙伴找到打开定制化Caffe大门的钥匙。本文作者希望借此抛砖引玉,与更多期望了解Caffe和深度学习框架底层实现的同行交流。

Copyright © 2016-2025 www.robotxin.com 人工智能机器人网 版权所有 Power by