完胜人类后 "冷扑大师"想用AI提高肾脏移植效
近日,在杉树科技人工智能大师圆桌会议上, “冷扑大师”设计者、美国卡内基梅隆大学(CMU)的计算机系教授托马斯?桑德霍姆(Tuomas Sandholm)告诉澎湃新闻(.thepaper.),相比AlphaGo下围棋时能得到的完美信息,在日常生活中,我们更多的会遇到不完美信息博弈的场景,比如医疗领域里的肾脏移植。在桑德霍姆的帮助下,美国器官移植网络的非营利性组织(United Netork for Organ Sharing,简称UNOS)成功建立了更有效的肾脏分配制度。
在德州扑克中,玩家不知道对手手中是什么牌,不知道五张公共牌会开出怎样的结果,也不知道对手猜测自己握有怎样的手牌。要想取胜,计算机需要找到一个无论对方怎么做,自己都不会产生损失的策略。不完美信息的博弈就是让人工智能学会找到平衡风险与收益的方法。这与器官移植有着相似点。因为对于等待器官移植的病人来说,他只知晓自己的情况,无法了解整个器官供应链条中的信息。这种情况下,我们就需要在 “不完美信息”的情景中做出决策。
用算法提高肾脏捐赠的匹配率和捐赠效率
目前,传统的器官移植主要有两类一类是亲属捐献,即病人亲属捐献,这类捐献的好处就是病人往往不用等;一类是死者捐献,一些死者在死前会签署捐献协议,承诺死后捐献器官。但不论是哪一种,器官捐献的数量都远远落后于病人数量。
除了移植器官数量稀少外,器官移植还涉及到移植分配和效率问题。举例来说,移植的器官与接受器官移植的病人,因为血型不符或白血球抗原过敏,导致器官移植之后,病人的身体与器官相互排斥。这样一来,不见得等到有移植的器官,病人就能得救,他同样冒着极大的风险。
,如何让有限的器官,送到有需要的病人那,成为关键,这就需要设计一个合理的分配机制。从目前的医疗实践来看,肾脏移植有两种方式。一是建立多人交换循环。比如,A家属给自己的病人A捐献不了,但却适合一家的病人B。而B的亲属的器官刚好适合病人A。在这种情况发生的时候,双方可以通过交换捐献的方式解决问题。依此类推,建立更完整的病人数据库就能扩大受益家庭和病人。,这种移植方案也有一个漏洞,即多台手术必须做。一旦有肾脏移植的捐赠者出现反悔,就会导致整个捐赠链条不可进行。
多人交换移植
第二种方式是链式匹配。简单的说就是将死者捐献的器官移植给某个病人,但前提条件是病人的亲属答应把肾捐给下一个病人,这个病人的亲属又答应把肾捐给下一个,形成链式反应。链式移植的最大好处是并不需要严格执行,每一个家庭都是病人先得到肾再由捐赠人捐献器官。如果有人反悔,虽然会有一些负面的影响,相对来说影响会小很多。链式移植的另一个好处是可选择性高,相对来说,会大大提高系统的移植效率。不过,缺点是会消耗一部分死者捐献的肾源。
选择死者肾源的链式移植
在这的情况下, UNOS建立了捐赠者和病人的数据库,内容包括需要移植器官的病人和捐献者的身体情况、血型、身型,还有病人的地理位置,并努力地搜集病人的数据和愿意捐献器官的亲属的数据,更好地把这些亲属匹配起来。,利用人工建立并设计一套算法以在万亿次交换的可能性当中,找到条件匹配的捐赠者和受赠者,从而提高捐赠的效率。
上海财经大学教授,中国运筹学会青年科技奖获得者何斯迈告诉澎湃新闻(.thepaper.),目前美国于2007年已经正式立法,允许交换移植。在桑德霍姆建立算法并应用到UNOS平台后,该平台的肾移植的数量从每年28000例提升到33600例。
效率与公平,由谁来决定
虽然利用人工提高了肾脏移植的匹配率,但因为死者捐赠的肾远远不够满足无亲属捐赠的病人需求。一个肾在一方面可以通过链式移植救很多的病人,一定会有病人无法得到合适的器官移植。这样一来就会出现经典的电车难题一辆电车脱轨了,一边的轨道上有一群小朋友在玩。如果你是火车司机,你可以选择将火车扳一个岔道从而拯救这些小朋友,会害了在岔道上工作的另一个人。你会怎么做呢?
电车难题
为了尽量避免这种情况,桑德霍姆的计算模型在做出决策时,并不是简单地以人越多越好为优先。因为抗体和血型特殊很难配上,只有在追求短期移植效率最高时,这种特殊病人才会积压下来。在这种时候,算法就必须预测每一个肾捐给一位病人之后能活多久,他们之间移植存活率有多高。
对于计算机来说,所有涉及的因素都可以量化,但在现实生活中,情况并不是都可以量化的。例如,按照计算机排序和等待时间,下一个肾脏应该移植给一位80岁的老人,但计算机根据他的身体状况算出,他移植后只能再活一年。但如果移植给下一位病人,一位10岁的儿童,却能活30年。这种情况下,医生该如何选择?
桑德霍姆给出的回答是“我们的算法负责计算,并告知医生移植后的效率哪个更高。但做出决定的应该是医生和病人。”
机器人培训
- 达芬奇机器人献爱心 将主刀公益手术
- 亚马逊将在英国招聘2000多人 重点开发Alexa和无人
- 美、德、英、日、中5国机器人发展全景大盘点
- 国产机器人窗口期 不可错失制造2025弯道超车机会
- 一个小时,这只机械狗“自学”会了走路!
- 三穗长吉镇:无人机飞防作业 稳粮增豆保丰收
- 依靠静电着陆的新型机器人
- 工业机器人推广应用座谈会
- 在苹果的智能机器人软件公司是一种怎样的体验
- 四大家族之KUKA工业机器人应用案例分析
- 万事俱备只欠东风?机器人产业的东风到底在哪
- 欧洲 6 轮送货机器人开始在美国大学推广
- 芜湖:考核第一!6项冠军!
- 人工智能有望打破医疗资源不均衡
- 立讯精密:已进军新能源汽车市场,目标成为全
- 90后用机器人炒菜周入10万,炒菜机器人真的有可