2018年的人工智能和深度学习将会如何发展?
最常见的人工智能构成部分,以及人工智能家族中的“聪明之星”,都是“深度学习”。深度学习是一种数据学习的模式,近年来改进了长期以来的预测准确性标准。除了传统的预测建模之外,它还在和计算机视觉领域有突出贡献。,随着我们迎接新年的到来,事情将变得更加有趣。让我们来看看2018年的深度学习(以及更广泛的人工智能)的情况。
卷积(几乎)无处不在
卷积是一种复杂的学习模型,它的优点是需要对数据进行最少的预处理或“清理”。主要被应用于“解决”视觉图像分类和处理,目前开始应用于更多的案例。
其理念是,视觉世界是合成的,图像可以被分解成最基本的特征。例如,一个风景的图像由各种各样的物体组成;这些物体由轮廓和线条组成,而这些线条又由像素组成。Covs能够识别这些成分,并创建分层的抽象世界概念,使各种识别任务变得更容易。
(图注以鸟的形象在图像中识别物体的卷积。)
目前,Facebook的照片标签和面部识别功能都使用了Covs。在2018年,我们可以预计,Covs将更广泛的应用于领域,特斯拉的Model X已经在使用Covs来实现的相关功能。更近的,像Quere.ai这样的公司正在使用Covs,并且在医学成像的诊断方面取得了显著的成功。预计公司将开始为这些高度精确的学习模式寻找不同的应用。
人工智能将加强数据安全
虽然和深度学习模型具有前所未有的预测精度,但有些目前仍容易受到质疑。例如,在受监督的中,模型学习标记数据的某些特征,训练和测试数据被假定来自相同的数据分布。如果数据在这个假设中失真,那么模型的预测精度就会受到很大的影响。以垃圾邮件过滤为例——如果将随机文本和图像添加到消息中,消息可能会绕过垃圾邮件检测系统。这就是为什么你的收件箱里塞满了垃圾邮件,尽管有一个系统可以阻止它。
安全部门巨头McAfee公司认为,将数字安全考虑在内,2018年勒索软件和其他数字威胁(比如对全球社会造成恐慌的“WannaCry”)越来越多地利用和深度学习技术。具体来说,这些模型将威胁到检测模型,从检测模型的防御反应中学习,并利用发现的漏洞来破坏检测模型,其速度比防御者修补漏洞的速度更快。
为了抵御这些技术,McAfee公司的工程师们一直在研究对抗,并组建一个先进的防御研究团队来为这些漏洞创建解决方案。要真正抵御这种攻击,唯一的办法是建立一种更为普遍的学习模式,甚至能找出最微小的异常。在这方面,一些有趣的研究正在进行中。
结论
在过去的两三年里,人工智能和深度学习在公共领域出现了爆炸式的增长,推出了一些令人兴奋的产品。在2018年和未来几年,它们将越来越多地出现在我们的日常互动中,尤其是在移动应用领域。
随着移动硬件地快速发展,它将能够支持复杂的深度学习任务。例如,苹果的iOS 11支持CoreML,这是一款面向iOS开发者的工具包。未来,开发者将可以部署支持文本预测和图像识别的应用(比如SnapChat),不需要任何的知识。
很显然,人工智能和深度学习的未来充满活力和前景。我们看到这种变化和进步的速度有多快,只有时间能给予我们答案。,随着新的一年的展开,让我们拭目以待,看看这一细分领域的表现吧。
机器人培训
- 达芬奇机器人献爱心 将主刀公益手术
- 亚马逊将在英国招聘2000多人 重点开发Alexa和无人
- 美、德、英、日、中5国机器人发展全景大盘点
- 国产机器人窗口期 不可错失制造2025弯道超车机会
- 一个小时,这只机械狗“自学”会了走路!
- 三穗长吉镇:无人机飞防作业 稳粮增豆保丰收
- 依靠静电着陆的新型机器人
- 工业机器人推广应用座谈会
- 在苹果的智能机器人软件公司是一种怎样的体验
- 四大家族之KUKA工业机器人应用案例分析
- 万事俱备只欠东风?机器人产业的东风到底在哪
- 欧洲 6 轮送货机器人开始在美国大学推广
- 芜湖:考核第一!6项冠军!
- 人工智能有望打破医疗资源不均衡
- 立讯精密:已进军新能源汽车市场,目标成为全
- 90后用机器人炒菜周入10万,炒菜机器人真的有可