数据采集标注:人工智能产业落地的「至强」后
这两年,人工智能越来越火。
大到机场、火车站、商超、街道上的人脸识别设备;小到我们手机APP的各种算法,以及Siri、小度、小爱等语音助手,都与人工智能相关。
虽然人工智能应用的越来越普及,可我们还是会经常遇到APP推送不精准,语音助手像个“傻瓜”,人脸识别系统频繁出乌龙等现象……
乌龙闹剧董明珠“闯红灯”。实际是公交巴士贴着董明珠头像,刚好被摄像头拍到,人工智能系统误以为是董明珠闯了红灯。
我们畅想的人工智能,是科幻电影中能够“想我所想”的人工智能。可我们面对的人工智能,却是频繁出错,甚至是难以落地的人工智能。
那么,面对这些问题,我们要如何解决?我们又要做哪些努力,才能让人工智能更加精准呢?
总有朋友认为,人工智能不准是因为训练人工智能的数据不准。其实,这个观点说对也对,但也并非全对。
数据确实是制约人工智能发展的重要一环。可制约人工智能发展的要素并不只有数据,算法、算力也是极其重要的因素。
如果以一辆汽车来比喻,算法是汽车的设计理念,算力更像是汽车的发动机,而数据则是驱动骑车前行的燃料。
光有燃料,没有好的发动机和设计,汽车自然跑不快。同样,光有发动机,没有燃料,汽车也无法不动。
按理说,三位一体的协同发展肯定是最好的。可当前人工智能公司的现状却是很多公司已经具备了先进的算法和优质的硬件,产品不能落地还真是燃料的问题。
Testin有数总经理贾宇航在接受采访时表示
“人工智能时代到来以后,越来越多的产品、APP、硬件成为人工智能落地的载体。在人工智能落地的过程中,很多企业受制于数据难题,在产品迭代、升级的过程中遇到了较大阻力。”
而关于人工智能企业面对的数据难题,贾宇航重点提到了两个
-
很多人工智能企业没有数据或可用的数据实在太少。这些企业在数据采集环节,就遇到了大问题。 -
很多人工智能公司好不容易采集到了大量数据,却无法将数据标注精准,也找不到可靠的、拥有相关经验的人来标注。总要面临数据如何筛选、如何使用的难题。
数据要如何采集、如何用?
高质、精准的数据才是行业的未来
诚然,人工智能的前路还无尽漫长,但从以Testin有数为首的数据采集、标注厂商的发展方向来看,我们已经看到了行业未来的蓝图。
机器人培训
- 达芬奇机器人献爱心 将主刀公益手术
- 亚马逊将在英国招聘2000多人 重点开发Alexa和无人
- 美、德、英、日、中5国机器人发展全景大盘点
- 国产机器人窗口期 不可错失制造2025弯道超车机会
- 一个小时,这只机械狗“自学”会了走路!
- 三穗长吉镇:无人机飞防作业 稳粮增豆保丰收
- 依靠静电着陆的新型机器人
- 工业机器人推广应用座谈会
- 在苹果的智能机器人软件公司是一种怎样的体验
- 四大家族之KUKA工业机器人应用案例分析
- 万事俱备只欠东风?机器人产业的东风到底在哪
- 欧洲 6 轮送货机器人开始在美国大学推广
- 芜湖:考核第一!6项冠军!
- 人工智能有望打破医疗资源不均衡
- 立讯精密:已进军新能源汽车市场,目标成为全
- 90后用机器人炒菜周入10万,炒菜机器人真的有可