比用Pytorch框架快200倍!0.76秒后,笔记本上的CN
本文经AI新媒体量子位(公众号ID:QbitAI)授权转载,转载请联系出处。
在MNIST上进行训练,可以说是计算机视觉里的“Hello World”任务了。
而如果使用PyTorch的标准代码训练CNN,一般需要3分钟左右。
但现在,在一台笔记本电脑上就能将时间缩短200多倍。
速度直达0.76秒!
那么,到底是如何仅在一次epoch的训练中就达到99%的准确率的呢?
八步提速200倍
这是一台装有GeForce GTX 1660 Ti GPU的笔记本。
我们需要的还有Python3.x和Pytorch 1.8。
先下载数据集进行训练,每次运行训练14个epoch。
这时两次运行的平均准确率在测试集上为99.185%,平均运行时间为2min 52s ± 38.1ms。
接下来,就是一步一步来减少训练时间
一、提前停止训练
在经历3到5个epoch,测试准确率达到99%时就提前停止训练。
这时的训练时间就减少了1/3左右,达到了57.4s±6.85s。
二、缩小网络规模,采用正则化的技巧来加快收敛速度
具体的,在第一个conv层之后添加一个2x2的最大采样层(max pool layer),将全连接层的参数减少4倍以上。
然后再将2个dropout层删掉一个。
这样,需要收敛的epoch数就降到了3个以下,训练时间也减少到30.3s±5.28s。
三、优化数据加载
使用data_loader.save_data(),将整个数据集以之前的处理方式保存到磁盘的一个pytorch数组中。
也就是不再一次一次地从磁盘上读取数据,而是将整个数据集一次性加载并保存到GPU内存中。
这时,我们只需要一次epoch,就能将平均训练时间下降到7.31s ± 1.36s。
四、增加Batch Size
将Batch Size从64增加到128,平均训练时间减少到4.66s ± 583ms。
五、提高学习率
使用Superconvergence来代替指数衰减。
在训练开始时学习率为0,到中期线性地最高值(4.0),再慢慢地降到0。
这使得我们的训练时间下降到3.14s±4.72ms。
六、增加Batch Size、缩小缩小网络规模
重复第二步,将Batch Size增加到256。
重复第四步,去掉剩余的dropout层,并通过减少卷积层的宽度来进行补偿。
最终将平均时间降到1.74s±18.3ms。
七、的微调
,将最大采样层移到线性整流函数(ReLU)激活之前。
然后,将卷积核大小从3增加到5.
进行超参数调整
使学习率为0.01(默认为0.001),beta1为0.7(默认为0.9),bata2为0.9(默认为0.999)。
到这时,我们的训练已经减少到一个epoch,在762ms±24.9ms的时间内达到了99.04%的准确率。
“这只是一个Hello World案例”
对于这的结果,有人觉得司空见惯
优化数据加载时间,缩小模型尺寸,使用ADAM而不是SGD等等,都是常识性的事情。
我想没有人会真的费心去加速运行MNIST,因为这是机器学习中的“Hello World”,重点只是像你展示最小的关键值,让你熟悉这个框架——事实上3分钟也并不长吧。
而也有网友觉得,大多数人的工作都不在像是MNIST这样的超级集群上。他表示
我所希望的是工作更多地集中在真正最小化训练时间方面。
GitHub
https://github./tuomaso/train_mnist_fast
人工智能培训
- 擦窗机器人真的好用吗
- 第20届天津工博会3月6日举办 千余企业共商工业低
- 国外社会对于机器人的一些观点
- 协作机器人又有新品登场 速来围观有何亮点
- 突破技术与价格之间的桎梏 减速机发展有望进入
- 马斯克的人工智能机器人多少钱
- 机器人来了2016高科技智能化将独领风骚
- 工程师忘记关门 机器人走上了大街瞎逛
- 李开复 2018中国最大AI红利是政策
- 无人零售让这5种人失业了 看看哪些零售岗位最可
- 一篇看懂服务机器人语音交互与三大技术的因果
- 人工智能 能否助人类重建巴比伦塔
- 九师两支代表队在第九届亚洲机器人锦标赛上夺
- 用动作捕捉技术建立人形机器人的数据工厂(续
- 机械科技趋势:智能创新影响力概览与评估
- 国内首款智能加油机器人在南宁试运行 3分钟即可