AI+游戏引擎:NPC越来越聪明,无人车也能在游戏

机器人技术 2019-08-15 21:31www.robotxin.com机器人技术
   很多人在玩游戏的时候,都会感觉到游戏中的NPC非常“脑残”。但这一情况将会发生改变了。前不久,Unity推出了一个强大的开源软件Unity Machine Learning Agents,通过这个开源软件,能够将其游戏引擎与机器学习程序连接起来。通过深度强化学习算法,非玩家角色(NPC)可以不断地进行尝试和犯错,变得更有创造性和策略性,从而增加游戏的对抗性和可玩性。也就是说,游戏中的NPC将会变得越来越聪明。更加值得关注的是,这个开源软件的适用范围并不仅限于游戏中的虚拟人物,还可以用来训练那些用于真实世界的。
  这些年,游戏开发者已经在使用人工智能来优化玩家能够操纵的游戏角色了。但玩家不能操纵的角色,游戏中的NPC,都是基于人类编写的规则,在游戏体验上并不完美,玩家很容易就能掌握了其中的规律,从而会感觉到游戏非常无聊。
 
  不过,这一切都将会发生改变。利用人工智能技术,游戏中的NPC将会根据游戏中遇到的情况,对自己的游戏规则进行编程和重新编程。也就是说,他们在游戏中的时间越长,就会越聪明。
 
  前不久,Unity推出了一个强大的开源软件Unity Machine Learning Agents,通过这个开源软件,能够将其游戏引擎与机器学习程序(比如谷歌的TensorFlo)连接起来。Unity是游戏引擎软件的主要制造商,王者荣耀、纪念碑谷、神庙逃亡2、Pokémon GO都用的是它提供的游戏引擎。
 
  Unity负责人工智能和机器学习的副总裁Danny Lange表示,通过深度强化学习算法,非玩家角色(NPC)可以不断地进行尝试和犯错,变得更有创造性和策略性,从而增加游戏的对抗性和可玩性。
 
  不过,Unity的新AI-linking工具的使用场景并不局限于游戏中的虚拟角色。Lange说,这种软件还可以加速机器人的发展,比如自动驾驶汽车,可以让它们在“杂乱无章的、计算机生成的”的场景中不间断的训练,使其变得更加智能。
  Unity利用机器学习技术,通过从多个角度评估场景——鸟-眼(左)和第一人称视角(右)——在这个尚未发布的坦克战斗游戏中设计出了一个策略。
 
  Unity也坦然表示,他们并没有发明这些技术,只是让这些技术变得更容易使用。比如说,谷歌旗下的DeepMind利用深度强化学习技术,教AI玩儿上世纪80年代的电子游戏,比如“Breakout”。
 
  在游戏式的环境中,训练自动驾驶系统也有很多的例子。比如说,MSC Softare的虚拟测试驱动器程序提供汽车培训模拟。像The Open Racing Car Simulator和Euro Truck Simulator 2这样的游戏也被用于自动驾驶汽车的虚拟训练。而Nvidia的Ne Lsaac Lab则使用竞争对手Epic Games的“虚拟引擎”来生成逼真的虚拟环境,用于训练那些控制真实机器人的算法。
 
  Lange表示,现在可以在GitHub上使用测试版的新ML-Agents工具,可以让游戏引擎和AI软件之间的链接不再动辄就要消耗数天甚至数周的时间。他说“我们想做的是在一小时内达到这一目标。”很显然,这会让更多的人更容易尝试开发出更好的游戏角色,或者把训练机器人这一枯燥的事情变得更容易。
 
  智能游戏
 
  今年早些时候,Unity展示了深度强化学习的潜力,它在一个基于Unity的移动游戏Crossy Road上做了实验。在游戏中,一只鸡必须穿过一条无穷无尽的道路,每次它撞到一个礼盒,就能获得一分,但每次它撞上一辆卡车,就会失去一分。在让分数最大化的任务的下,就开始了学习的过程。
 
  起初,这只鸡像一只喝醉了的蛾子一样四处乱飞,前后移动,不断与礼物和卡车相撞。
  经过几个小时的反复试验,再加上机器学习识别出最佳战术,这只鸟以“神一般的力量”在游戏中穿行。
  更复杂的NPC可以训练在更微妙的目标上,比如在第一人称射击游戏中最大化玩家的游戏时间。
 
  Lange说“它可能会发展出一些策略,以令人惊讶的方式展示自己。比如说,它会引诱你去追逐它,但你不会抓住它,它也不会马上杀死你。通过这样的方式来提高你在游戏中的时间。很显然,这为更有创造性的行为打开了一扇门,这是你可能想象不到的;或者说,以传统的代码水平而言,让NPC执行这样的策略会非常非常费力。”
 
  不过,也不要别指望这种能够自学成才的虚拟对手很快就会出现。对于学者和科技公司的研究团队来说,建立具有深度强化学习的NPC仍然是一项科学实验。但如果Unity的ML-Agents能让数百万注册开发者(即使是没有很多资金的用户)更方便地进行试验,那么这个过程可能会加快。
 
  智能机器人
 
  像Unity和Unreal 这样的游戏引擎现在可以非常精确地模拟现实世界。从光与景观的相互作用,到橡胶轮胎与水泥路之间的摩擦,游戏提供的虚拟环境已经非常精确了,可以用来训练那些用于真实世界的机器人。
 
  通过一种叫做过程渲染(procedural rendering)的方法,游戏引擎可以动态地合成一条几乎无限里程而且非常逼真的道路。通过机器学习软件可以从分析游戏中反馈的视频,并学习如何准确地解释它所看到的内容。
 
  Lange说“这与你在旧金山开车行驶在道路上很像。”他在2016年12月加入Unity之前,是Uber的机器学习主管。“但Uber的员工,他们需要做的就是回家,然后找外包公司来给这些视频数据贴上标签。”他们必须对每棵树、汽车、行人、人行道、车道分隔器等物体进行标记,只有这样,学习软件才能知道它看到了什么,并开发出识别它们的技术。在虚拟场景的训练中,因为像Unity或Unreal这样的软件是根据现实世界生成的非常逼真的场景,其中的每一个物体都已经贴上了标签。
 
  自动驾驶汽车目前是一项巨大的技术项目,甚至连主要汽车制造商和硅谷的公司都在往其中投入大量的资源。但随着Unity等产品的推出,小型游戏开发者更容易上手,Unity的ML-Agents也可以为更多的小型机器人和机器人开发者提供支持。
<

Copyright © 2016-2025 www.robotxin.com 人工智能机器人网 版权所有 Power by