物联网助力生物识别技术快速发展
生物测定技术根据人体自身的特征如指纹、声音等来识别个人的身份。目前,有很多的生物测定技术可用于身份认证。这里,我们描述一下大多数流行的生物测定技术是怎样工作的,并对它们抓图、抽取特征、比较和比对的功能做以简单的评论。
1、虹膜识别技术
虹膜是一种在眼睛中瞳孔内的织物状的各色环状物,每一个虹膜都包含一个独一无二的基于像冠、水晶体、细丝、斑点、结构、凹点、射线、皱纹和条纹等特征的结构,据宣称,没有任何两个虹膜是一样的。虹膜扫描安全系统包括一个全自动照相机来寻找你的眼睛并在发现虹膜时,就开始聚焦,想通过眨眼睛来欺骗系统是不行的。
优点
便于用户使用;可能会是最可靠的生物识别技术,尽管它还没有测试过;只需用户位于设备之前而无需物理的接触。
缺点
一个最为重要的缺点是它没有进行过任何的测试,当前的虹膜识别系统只是用统计学原理进行小规模的试验,而没有进行过现实世界的唯一性认证的试验;很难将图像获取设备的尺寸小型化;因聚焦的需要而需要昂贵的摄像头,一个这样的摄像头的最低报价为4000美元;镜头可能会使图像畸变而使得可靠性大为降低;黑眼睛极难读取;需要一个比较好的光源。
2、视网膜识别技术
视网膜也是一种被用于生物识别的特征,某些人认为视网膜是比虹膜更为唯一的生物特征,视网膜识别技术要求激光照射眼球的背面以获得视网膜特征的唯一性。
优点
视网膜是一种极其固定的生物特征,因为它是“隐藏“的,故而不可能磨损,老化或是为疾病影响;使用者不需要和设备进行直接的接触;
是一个最难欺骗的系统因为视网膜是不可见的,故而不会被伪造。
缺点
视网膜技术未经过任何测试。很明显,视网膜技术可能会给使用者带来健康的损坏,这需要进一步的研究;对于消费者,视网膜技术没有吸引力;很难进一步降低它的成本。
3、面部识别
面部识别技术通过对面部特征和它们之间的关系来进行识别,识别技术基于这些唯一的特征时是非常复杂的,这需要人工智能和机器知识学习系统,用于扑捉面部图像的两项技术为标准视频和热成像技术。标准视频技术通过一个标准的摄像头摄取面部的图像或者一系列图像,在面部被捕捉之后,一些核心点被记录,例如,
眼睛,鼻子和嘴的位置以及它们之间的相对位置被记录下来然后形成模板;热成像技术通过分析由面部的毛细血管的血液产生的热线来产生面部图像,与视频摄像头不同,热成像技术并不需要在较好的光源条件下,即使在黑暗情况下也可以使用。一个算法和一个系统加上一个转化机制就可将一幅指纹图像变成数字信号,最终产生匹配或不匹配信号。
优点
面部识别是非接触的,用户不需要和设备直接的接触;尽管可以使用桌面的视频摄像,但只有比较高级的摄像头才可以有效高速的扑捉面部图像;
缺点
使用者面部的位置与周围的光环境都可能影响系统的精确性;大部分研究生物识别的人都公认面部识别是最不准确的,也是最容易被欺骗的;面部识别技术的改进依赖于提取特征与比对技术的提高,并且采集图像的设备会比其技术昂贵得多;对于因人体面部的如头发,饰物,变老以及其他的变化可能需要通过人工智能来得到补偿,功能必须不断地将以前得到的图像和现在的得到的进行比对;以改进核心数据和弥补微小的差别;很难进一步降低它的成本,我们必需以昂贵的费用去卖高质量的设备。
4、签名识别
签名作为身份认证的手段已经用了几百年了,而且我们都很熟悉在银行的格式表单中签名作为我们身份的标志。将签名数字化是这样一个过程,测量图像本身以及整个签名的动作——在每个字母以及字母之间的不同的速度、顺序和压力,签名识别和声音识别一样,是一种行为测定学。
优点
使用签名识别更容易被大众接受而且是一种公认的身份识别的技术。
缺点
随着经验的增长,性情的变化与生活方式的改变,签名也会随着而改变;为了处理签名的不可辟免的自然改变,我们必须在安全方面做以妥协;因为签名的速度不快,我们无法在Inter上使用它;用于签名的手写板结构复杂而且价格昂贵,因为和笔记本电脑的触摸板的分辨率有着很大的差异,我们在技术上很难将两者结合起来;很难将它的尺寸小型化。
家用机器人
- 从初生创业到人工智能领域的佼佼者
- 人工智能产业的全面发展
- 中国人工智能已比肩世界
- 全球产业格局大调整 工业4.0掀半导体变革
- 机器人13年内将抢走全球8亿人饭碗 这些职业影响
- 懒人福音:三星新款 AI 冰箱支持电动开门
- 大疆机场,让无人机基础设施巡检迈向自动化、
- 能链智电开启充电机器人等创新业务 预计2023年收
- 人工智能创新应用先导区再扩容 智能经济渐行渐
- 集萃智造三栖机器人,灵活切换水、陆、空三栖
- 机器人产业发展规划(2016-2020年)发布
- 四大论坛日程出炉,创客、机器人、校外教育、
- 新发布14家“双跨”工业互联网平台
- 《中国制造2025》解读之:推动机器人发展
- 机器人为什么能写稿,以及它们能拿普利策奖吗
- 国产机器人发展方针研究,国产AI芯片再引关注,