人工智能不光能下围棋,还可提前两天预测急性

服务机器人 2021-05-31 10:03www.robotxin.com女性服务机器人

DeepMind的临床主管Dominic King在博客文章中表示,这项研究是团队迄今为止最大的医疗研究突破,证明了团队不仅能够有效地发现病情恶化,而且能在病情恶化前进行预测。

急性肾损伤是一种在危重病人身上常见的严重并发症,主要原因包括缺血、缺氧和肾毒性。这种疾病每年在英国约造成10万人的死亡。

上述研究由DeepMind和伦敦大学学院、英国伦敦大学学院医院、美国退伍军人事务部(VA)等机构共同完成。

每年有数以百万计的人死于可以通过早期检测而预防的疾病,其中一种就是急性肾损伤。在英国和美国,急性肾损伤大约影响着五分之一的住院病人。这种疾病不仅难以被发现而且往往恶化很快。

为了解决这个问题,DeepMind与美国退伍军人事务部展开了一项合作。DeepMind运用美国退伍军人事务医疗系统中70多万名患者的数据,训练了一个深度学习系统。使用这个系统,55.8%的急性肾损伤可以在标准临床诊断前48小时被预测。

上图所展示的是一个有慢性阻塞性肺疾病病史的65岁男性患者入院的前8天。a. 患者在住院过程中的肌酐检测数据显示急性肾损伤发生在第5天。b.模型在急性肾损伤被发现前48小时预测出风险上升。c.入院后4.5天的实验室值预测。

与此,这一系统还成功地识别出病情严重、需要透析的病人,识别率达90.2%。

研究人员认为,这种早期预警能力能够在不可逆的肾损伤发生之前,提醒医生为病人提供及时治疗。

模型预测与实际急性肾损伤发生的时间差。模型预测特定时间窗口内的急性肾损伤风险。a.任何急性肾损伤,b.急性肾损伤第三阶段。

模型架构图

Dominic King提到,该人工智能模型在未来可以推广到败血症、重大感染等疾病领域。

Copyright © 2016-2025 www.robotxin.com 人工智能机器人网 版权所有 Power by