谷歌AI研究人员提出噪声感知训练方法
人工智能 2024-04-08 20:16www.robotxin.com人工智能专业
在文档处理中,特别是在视觉丰富的文档(VRDs)中,高效信息提取(IE)的需求变得越来越关键。VRDs,如发票、水电费单和保险报价,在业务工作流中随处可见,通常以不同的布局和格式呈现类似信息。自动从这些文档中提取相关数据可以显著减少解析所需的手动工作量。,从 VRDs 实现 IE 的通用解决方案面临着重大挑战,因为它需要理解文档的文本和视觉特性,这些特性无法轻松地从其他来源中获取。
针对从 VRDs 提取信息的任务,已经提出了许多方法,范围从分割算法到编码视觉和文本上下文的深度学习架构。,许多这些方法依赖于监督学习,需要许多人工标记的样本进行训练。
标记高度准确的 VRDs 是一项耗时且昂贵的工作,这在企业场景中构成了瓶颈,必须为成千上万种文档类型训练定制提取器。研究人员已经转向预训练策略来解决这一挑战,利用无监督多模态目标在未标记实例上训练抽取器模型,然后在人工标记的样本上进行微调。
尽管预训练策略具有许多潜在优势,但它们经常需要大量的时间和计算资源,使其在受限制的训练时间内变得不切实际。作为对这一挑战的回应,谷歌 AI 的研究团队提出了一种半监督的持续训练方法,以在有限的人工标记样本和有限的训练时间内训练出稳健的抽取器。他们提出了一种噪声感知训练方法(NAT)。他们的方法分为三个阶段,利用标记和未标记数据来循序渐进地提高抽取器的性能,遵守对训练施加的时间约束。
他们研究的核心问题是推动文档处理领域的发展,特别是在企业环境中,可扩展性和效率至关重要。挑战在于开发技术,允许在有限的标记数据和有限的训练时间内有效地从 VRDs 中提取信息。他们提出的方法旨在应对这一挑战,最终目标是使普通用户能够访问先进的文档处理功能,最大限度地减少为训练定制提取器所需的人工工作量和资源。
所提出的半监督持续训练方法不仅解决了在严格时间限制内训练强大文档抽取器所固有的挑战,而且带来了一系列好处。通过系统地利用标记和未标记数据,他们的方法有望显着提高企业环境中文档处理工作流的效率和可扩展性,最终提高生产力并降低运营成本。他们的研究为使普通用户能够访问先进的文档处理功能铺平了道路,标志着该领域迈出了重要的一步。
上一篇:史上首个满级防水手机
下一篇:机器人编程考级费用多少 机器人编程考级费用多少钱一年
人工智能培训
- 真正能和人交流的机器人什么时候实现
- 国产机器人成功完成首例远程冠脉介入手术
- 人工智能与第四次工业革命
- 未来30年的AI和物联网
- 新三板创新层公司东方水利新增专利授权:“一
- 发展人工智能是让人和机器更好地合作
- 新春贺喜! 经开区持续推进工业互联网平台建设
- 以工业机器人为桥 传统企业如何趟过智造这条河
- 山立滤芯SAGL-1HH SAGL-2HH
- 2015国际智能星创师大赛火热报名中!
- 未来机器人会咋看人类?递归神经网络之父-像蚂
- 成都新川人工智能创新中心二期主体结构封顶
- 斯坦德机器人完成数亿元人民币C轮融资,小米产
- 到2020年,智能手机将拥有十项AI功能,有些可能
- 寻找AI机器人的增长“跳板”:老龄化为支点的产
- 力升高科耐高温消防机器人参加某支队性能测试